LMG3410R150
- TI GaN process qualified through accelerated reliability in-application hard-switching profiles
- Enables high-density power conversion designs
- Superior system performance over cascode or stand-alone GaN FETs
- Low inductance 8 mm × 8 mm QFN package for ease of design and layout
- Adjustable drive strength for switching performance and EMI control
- Digital fault status output signal
- Only +12 V of unregulated supply needed
- Integrated gate driver
- Zero common source inductance
- 20-ns propagation delay for high-frequency design
- Trimmed gate bias voltage to compensate for threshold variations ensures reliable switching
- 25-V/ns to 100-V/ns adjustable slew rate
- Robust protection
- Requires no external protection components
- Overcurrent protection with <100 ns response
- Greater than 150-V/ns slew rate immunity
- Transient overvoltage immunity
- Overtemperature protection
- Undervoltage lockout (UVLO) protection on all supply rails
- Device Options:
- LMG3410R150: Latched overcurrent protection
- LMG3411R150: Cycle-by-cycle overcurrent proection
The LMG341xR150 GaN FET with integrated driver and protection enables designers to achieve new levels of power density and efficiency in power electronics systems. The inherent advantages of this device over silicon MOSFETs include ultra-low input and output capacitance, zero reverse recovery to reduce switching losses by as much as 80%, and low switch node ringing to reduce EMI. These advantages enable dense and efficient topologies like the totem-pole PFC.
The LMG341xR150 provides a smart alternative to traditional cascode GaN and standalone GaN FETs by integrating a unique set of features to simplify design, maximize reliability and optimize the performance of any power supply. Integrated gate drive enables 100 V/ns switching with near zero VDS ringing, less than 100-ns current limiting response self-protects against unintended shoot-through events, Overtemperature shutdown prevents thermal runaway, and system interface signals provide self-monitoring capability.
Similar products you might be interested in
Pin-for-pin with same functionality to the compared device
Technical documentation
Type | Title | Date | ||
---|---|---|---|---|
* | Data sheet | LMG341xR150 600-V, 150-mΩ, GaN FET with Integrated Driver and Protection datasheet (Rev. B) | PDF | HTML | 13 Feb 2020 |
White paper | Achieving GaN Products With Lifetime Reliability | PDF | HTML | 02 Jun 2021 | |
White paper | TI GaN FET와 C2000™ 실시간 MCU를 결합하여 전력 밀도가 높고 효율적인 전원 시스템 달성 | 18 Mar 2021 | ||
White paper | 結合 TI GaN FETs 與 C2000™ 即時 MCU,實現功率密集與有效率的數位電源系統 | 18 Mar 2021 | ||
White paper | Achieve Power-Dense and Efficient Digital Power Systems by Combining TI GaN FETs | 05 Jan 2021 | ||
More literature | A Generalized Approach to Determine the Switching Lifetime of a GaN FET | 20 Oct 2020 | ||
Analog Design Journal | Wide-bandgap semiconductors: Performance and benefits of GaN versus SiC | 22 Sep 2020 | ||
Application note | Thermal Considerations for Designing a GaN Power Stage (Rev. B) | 04 Aug 2020 | ||
EVM User's guide | LMG3410R150-031 EVM User Guide | 02 Apr 2019 |
Design & development
For additional terms or required resources, click any title below to view the detail page where available.
LMG34XX-BB-EVM — LMG34xx GaN system-level evaluation motherboard for LMG341x Family
The LMG34XX-BB-EVM is an easy to use breakout board to configure any LMG341x half bridge board, such as the LMG3410-HB-EVM, as a synchronous buck converter. By providing a power stage, bias power and logic circuitry this EVM allows for quick measurements of the GaN device switching. This EVM is (...)
LMG3410EVM-031 — LMG3410R150 600-V 150-mΩ GaN half-bridge daughter card
LMG3410R150 Unencrypted PSPICE Trans Model Package (Rev. A)
SNOR029 — GaN CCM Boost PFC Power Loss Calculation Excel Sheet
Supported products & hardware
Products
Gallium nitride (GaN) power stages
SNOR030 — GaN CCM Totem Pole PFC Power Loss Calculation Excel Sheet
Supported products & hardware
Products
Gallium nitride (GaN) power stages
Package | Pins | CAD symbols, footprints & 3D models |
---|---|---|
VQFN (RWH) | 32 | Ultra Librarian |
Ordering & quality
- RoHS
- REACH
- Device marking
- Lead finish/Ball material
- MSL rating/Peak reflow
- MTBF/FIT estimates
- Material content
- Qualification summary
- Ongoing reliability monitoring
- Fab location
- Assembly location
Support & training
TI E2E™ forums with technical support from TI engineers
Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.
If you have questions about quality, packaging or ordering TI products, see TI support.