The ADS62P19 is part of a family of dual-channel, 11-bit, analog-to-digital converters (ADCs) with sampling rates up to 250 MSPS. The device combines high dynamic performance and low power consumption in a compact QFN-64 package. This functionality makes the device well-suited for multi-carrier, wide-bandwidth communication applications.
The ADS62P19 has gain options that can be used to improve spurious-free dynamic range (SFDR) performance at lower full-scale input ranges. The device includes a dc offset correction loop that can be used to cancel ADC offset. Both double data rate (DDR) low-voltage differential signaling (LVDS) and parallel complementary metal oxide semiconductor (CMOS) digital output interfaces are available.
Although the device includes internal references, the traditional reference pins and associated decoupling capacitors are eliminated. Nevertheless, the device can also be driven with an external reference. The device is specified over the industrial temperature range (–40°C to +85°C).
The ADS62P19 is part of a family of dual-channel, 11-bit, analog-to-digital converters (ADCs) with sampling rates up to 250 MSPS. The device combines high dynamic performance and low power consumption in a compact QFN-64 package. This functionality makes the device well-suited for multi-carrier, wide-bandwidth communication applications.
The ADS62P19 has gain options that can be used to improve spurious-free dynamic range (SFDR) performance at lower full-scale input ranges. The device includes a dc offset correction loop that can be used to cancel ADC offset. Both double data rate (DDR) low-voltage differential signaling (LVDS) and parallel complementary metal oxide semiconductor (CMOS) digital output interfaces are available.
Although the device includes internal references, the traditional reference pins and associated decoupling capacitors are eliminated. Nevertheless, the device can also be driven with an external reference. The device is specified over the industrial temperature range (–40°C to +85°C).