Home Power management Gate drivers Low-side drivers

UCC27424

ACTIVE

4-A/4-A dual-channel gate driver with enable and 5-V IN handling

Product details

Number of channels 2 Power switch IGBT, MOSFET Peak output current (A) 4 Input supply voltage (min) (V) 4 Input supply voltage (max) (V) 15 Features Enable pin Operating temperature range (°C) -40 to 105 Fall time (ns) 15 Input threshold CMOS, TTL Channel input logic Non-Inverting Input negative voltage (V) 0 Rating Catalog Driver configuration Non-Inverting
Number of channels 2 Power switch IGBT, MOSFET Peak output current (A) 4 Input supply voltage (min) (V) 4 Input supply voltage (max) (V) 15 Features Enable pin Operating temperature range (°C) -40 to 105 Fall time (ns) 15 Input threshold CMOS, TTL Channel input logic Non-Inverting Input negative voltage (V) 0 Rating Catalog Driver configuration Non-Inverting
HVSSOP (DGN) 8 14.7 mm² 3 x 4.9 PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6
  • Industry-Standard Pin-Out
  • Enable Functions for Each Driver
  • High Current Drive Capability of ±4 A
  • Unique BiPolar and CMOS True Drive Output Stage Provides High Current at MOSFET Miller Thresholds
  • TTL/CMOS Compatible Inputs Independent of Supply Voltage
  • 20-ns Typical Rise and 15-ns Typical Fall Times with 1.8-nF Load
  • Typical Propagation Delay Times of 25 ns with Input Falling and 35 ns with Input Rising
  • 4-V to 15-V Supply Voltage
  • Dual Outputs Can Be Paralleled for Higher Drive Current
  • Available in Thermally Enhanced MSOP PowerPAD™ Package
  • Rated From –40°C to 125°C
  • Industry-Standard Pin-Out
  • Enable Functions for Each Driver
  • High Current Drive Capability of ±4 A
  • Unique BiPolar and CMOS True Drive Output Stage Provides High Current at MOSFET Miller Thresholds
  • TTL/CMOS Compatible Inputs Independent of Supply Voltage
  • 20-ns Typical Rise and 15-ns Typical Fall Times with 1.8-nF Load
  • Typical Propagation Delay Times of 25 ns with Input Falling and 35 ns with Input Rising
  • 4-V to 15-V Supply Voltage
  • Dual Outputs Can Be Paralleled for Higher Drive Current
  • Available in Thermally Enhanced MSOP PowerPAD™ Package
  • Rated From –40°C to 125°C

The UCC2742x family of high-speed dual MOSFET drivers can deliver large peak currents into capacitive loads. Three standard logic options are offered – dual-inverting, dual-noninverting, and one-inverting and one-noninverting driver. The thermally enhanced 8-pin PowerPAD™ MSOP package (DGN) drastically lowers the thermal resistance to improve long-term reliability. It is also offered in the standard SOIC-8 (D) or PDIP-8 (P) packages.

Using a design that inherently minimizes shoot-through current, these drivers deliver 4A of current where it is needed most at the Miller plateau region during the MOSFET switching transition. A unique BiPolar and MOSFET hybrid output stage in parallel also allows efficient current sourcing and sinking at low supply voltages.

The UCC2742x provides enable (ENB) functions to have better control of the operation of the driver applications. ENBA and ENBB are implemented on pins 1 and 8 which were previously left unused in the industry standard pin-out. They are internally pulled up to V DD for active high logic and can be left open for standard operation.

The UCC2742x family of high-speed dual MOSFET drivers can deliver large peak currents into capacitive loads. Three standard logic options are offered – dual-inverting, dual-noninverting, and one-inverting and one-noninverting driver. The thermally enhanced 8-pin PowerPAD™ MSOP package (DGN) drastically lowers the thermal resistance to improve long-term reliability. It is also offered in the standard SOIC-8 (D) or PDIP-8 (P) packages.

Using a design that inherently minimizes shoot-through current, these drivers deliver 4A of current where it is needed most at the Miller plateau region during the MOSFET switching transition. A unique BiPolar and MOSFET hybrid output stage in parallel also allows efficient current sourcing and sinking at low supply voltages.

The UCC2742x provides enable (ENB) functions to have better control of the operation of the driver applications. ENBA and ENBB are implemented on pins 1 and 8 which were previously left unused in the industry standard pin-out. They are internally pulled up to V DD for active high logic and can be left open for standard operation.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
NEW UCC27444 ACTIVE 4-A dual-channel low-side gate driver with -5-V input capability More recent 20V VDD driver
UCC27524A ACTIVE 5-A/5-A dual-channel gate driver with 5-V UVLO, enable, and negative input voltage handling This product has higher drive current with 5-A sink/source, as well as faster propagation delay (13-ns) , rise time (7-ns) and fall time (6-ns).

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet UCC2742x Dual 4-A High Speed Low-Side MOSFET Drivers With Enable datasheet (Rev. F) PDF | HTML 28 Nov 2023
Application note Why use a Gate Drive Transformer? PDF | HTML 04 Mar 2024
Application note Benefits of a Compact, Powerful, and Robust Low-Side Gate Driver PDF | HTML 10 Nov 2021
Application brief External Gate Resistor Selection Guide (Rev. A) 28 Feb 2020
Application brief Understanding Peak IOH and IOL Currents (Rev. A) 28 Feb 2020
More literature Fundamentals of MOSFET and IGBT Gate Driver Circuits (Replaces SLUP169) (Rev. A) 29 Oct 2018
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

UCC27423-4-5-Q1EVM — UCC2742xQ1 Dual 4-A High-Speed Low-Side MOSFET Drivers With Enable Evaluation Module (EVM)

The UCC2742xQ1 EVM is a high-speed dual MOSFET evaluation module that provides a test platform for a quick and easy startup of the UCC2742xQ1 driver. Powered by a single 4V to 15V external supply, and featuring a comprehensive set of test points and jumpers. All of the devices have separate input (...)
User guide: PDF
Not available on TI.com
Simulation model

UCC27424 PSpice Transient Model

SLUM322.ZIP (40 KB) - PSpice Model
Simulation model

UCC27424 TINA-TI Transient Model

SLUM440.ZIP (15 KB) - TINA-TI Spice Model
Simulation model

UCC27424 TINA-TI Transient Reference Design

SLUM439.TSC (82 KB) - TINA-TI Reference Design
Simulation model

UCC27424 Unencrypted PSpice Transient Model

SLUM508.ZIP (2 KB) - PSpice Model
Calculation tool

SLURB24 UCC2742X Schematic Review Template

Supported products & hardware

Supported products & hardware

Products
Low-side drivers
UCC27423 4-A/4-A dual-channel gate driver with 5-V UVLO, enable, and inverting inputs UCC27423-EP Enhanced Product 4-A/4-A dual-channel gate driver with inverting inputs UCC27423-Q1 Automotive 4-A/4-A dual-channel gate driver with enable and inverting inputs UCC27424 4-A/4-A dual-channel gate driver with enable and 5-V IN handling UCC27424-EP Enhanced Product 4-A/4-A dual-channel gate driver with enable UCC27424-Q1 Automotive 4-A/4-A dual-channel gate driver with enable UCC27425 4-A/4-A dual-channel gate driver with enable and inverting/non-inverting inputs UCC27425-Q1 Automotive 4-A/4-A dual-channel gate driver with inverting/non-inverting inputs
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Reference designs

TIDM-DC-DC-BUCK — Digitally Controlled Non-Isolated DC/DC Buck Converter Reference Design

The purpose of this design is to demonstrate digital power control using a C2000™ microcontroller and evaluate the powerSUITE Digital Power software tools. The design consists of two separate boards:
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00412 — 360W Digital Controlled Phase Shift Full Bridge Converter Reference Design

DC-DC power converter with digital control using UCD3138CC64EVM-030 daughter-card. The daughter-card  with preloaded firmware providing the required control functions for a Phase Shift Full Bridge converter.  The TIDA-00412 (UCD3138PSFBEVM-027) accepts a DC input from 370 to 400 VDC, and (...)
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
HVSSOP (DGN) 8 Ultra Librarian
PDIP (P) 8 Ultra Librarian
SOIC (D) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos