Product details

Arm CPU 2 Arm Cortex-A15 Arm (max) (MHz) 1500 Coprocessors 2 Dual Arm Cortex-M4 CPU 32-bit Graphics acceleration 1 2D, 2 3D Display type 1 HDMI, 3 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100/1000, 2-Port 1Gb switch PCIe 1 PCIe Gen 2 Hardware accelerators 1 Image Subsystem Processor, 1 Image Video Accelerator, 2 Viterbi Decoder, Audio Tracking Features Multimedia Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Automotive Operating temperature range (°C) -40 to 125
Arm CPU 2 Arm Cortex-A15 Arm (max) (MHz) 1500 Coprocessors 2 Dual Arm Cortex-M4 CPU 32-bit Graphics acceleration 1 2D, 2 3D Display type 1 HDMI, 3 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100/1000, 2-Port 1Gb switch PCIe 1 PCIe Gen 2 Hardware accelerators 1 Image Subsystem Processor, 1 Image Video Accelerator, 2 Viterbi Decoder, Audio Tracking Features Multimedia Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Automotive Operating temperature range (°C) -40 to 125
FCCSP (ABZ) 760 529 mm² 23 x 23
  • Architecture Designed for Infotainment Applications
  • Video, Image, and Graphics Processing Support
    • Full-HD Video (1920 × 1080p, 60 fps)
    • Multiple Video Input and Video Output
    • 2D and 3D Graphics
  • Dual Arm® Cortex®-A15 Microprocessor Subsystem
  • Up to Two C66x Floating-Point VLIW DSP
    • Fully Object-Code Compatible with C67x and C64x+
    • Up to Thirty-Two 16 x 16-Bit Fixed-Point Multiplies per Cycle
  • Up to 2.5MB of On-Chip L3 RAM
  • Level 3 (L3) and Level 4 (L4) Interconnects
  • Two DDR2/DDR3/DDR3L Memory Interface (EMIF) Modules
    • Supports up to DDR2-800 and DDR3-1333
    • Up to 2GB Supported per EMIF
  • Dual ARM® Cortex®-M4 Image Processing Units (IPU)
  • Up to Two Embedded Vision Engines (EVEs)
  • Imaging Subsystem (ISS)
    • Image Signal Processor (ISP)
    • Wide Dynamic Range and Lens Distortion Correction (WDR and Mesh LDC)
    • One Camera Adaptation Layer (CAL_B)
  • IVA Subsystem
  • Display Subsystem
    • Display Controller with DMA Engine and up to Three Pipelines
    • HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant
  • Video Processing Engine (VPE)
  • 2D-Graphics Accelerator (BB2D) Subsystem
    • Vivante® GC320 Core
  • Dual-Core PowerVR® SGX544 3D GPU
  • Two Video Input Port (VIP) Modules
    • Support for up to Eight Multiplexed Input Ports
  • General-Purpose Memory Controller (GPMC)
  • Enhanced Direct Memory Access (EDMA) Controller
  • 2-Port Gigabit Ethernet (GMAC)
  • Sixteen 32-Bit General-Purpose Timers
  • 32-Bit MPU Watchdog Timer
  • Five Inter-Integrated Circuit (I2C) Ports
  • HDQ™/1-Wire® Interface
  • SATA Interface
  • Media Local Bus (MLB) Subsystem
  • Ten Configurable UART/IrDA/CIR Modules
  • Four Multichannel Serial Peripheral Interfaces (McSPI)
  • Quad SPI (QSPI)
  • Eight Multichannel Audio Serial Port (McASP) Modules
  • SuperSpeed USB 3.0 Dual-Role Device
  • Three High-Speed USB 2.0 Dual-Role Devices
  • Four MultiMedia Card/Secure Digital/Secure Digital Input Output Interfaces (MMC™/SD®/SDIO)
  • PCI Express® 3.0 Subsystems with Two 5-Gbps Lanes
    • One 2-Lane Gen2-Compliant Port
    • or Two 1-Lane Gen2-Compliant Ports
  • Up to Two Controller Area Network (DCAN) Modules
    • CAN 2.0B Protocol
  • Modular Controller Area Network (MCAN) Module
    • CAN 2.0B Protocol with Available FD (Flexible Data Rate) Functionality
  • Up to 247 General-Purpose I/O (GPIO) Pins
  • Real-Time Clock Subsystem (RTCSS)
  • Device Security Features
    • Hardware Crypto Accelerators and DMA
    • Firewalls
    • JTAG® Lock
    • Secure Keys
    • Secure ROM and Boot
    • Customer Programmable Keys and OTP Data
  • Power, Reset, and Clock Management
  • On-Chip Debug with CTools Technology
  • 28-nm CMOS Technology
  • 23 mm × 23 mm, 0.8-mm Pitch, 760-Pin BGA (ABZ)
  • Architecture Designed for Infotainment Applications
  • Video, Image, and Graphics Processing Support
    • Full-HD Video (1920 × 1080p, 60 fps)
    • Multiple Video Input and Video Output
    • 2D and 3D Graphics
  • Dual Arm® Cortex®-A15 Microprocessor Subsystem
  • Up to Two C66x Floating-Point VLIW DSP
    • Fully Object-Code Compatible with C67x and C64x+
    • Up to Thirty-Two 16 x 16-Bit Fixed-Point Multiplies per Cycle
  • Up to 2.5MB of On-Chip L3 RAM
  • Level 3 (L3) and Level 4 (L4) Interconnects
  • Two DDR2/DDR3/DDR3L Memory Interface (EMIF) Modules
    • Supports up to DDR2-800 and DDR3-1333
    • Up to 2GB Supported per EMIF
  • Dual ARM® Cortex®-M4 Image Processing Units (IPU)
  • Up to Two Embedded Vision Engines (EVEs)
  • Imaging Subsystem (ISS)
    • Image Signal Processor (ISP)
    • Wide Dynamic Range and Lens Distortion Correction (WDR and Mesh LDC)
    • One Camera Adaptation Layer (CAL_B)
  • IVA Subsystem
  • Display Subsystem
    • Display Controller with DMA Engine and up to Three Pipelines
    • HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant
  • Video Processing Engine (VPE)
  • 2D-Graphics Accelerator (BB2D) Subsystem
    • Vivante® GC320 Core
  • Dual-Core PowerVR® SGX544 3D GPU
  • Two Video Input Port (VIP) Modules
    • Support for up to Eight Multiplexed Input Ports
  • General-Purpose Memory Controller (GPMC)
  • Enhanced Direct Memory Access (EDMA) Controller
  • 2-Port Gigabit Ethernet (GMAC)
  • Sixteen 32-Bit General-Purpose Timers
  • 32-Bit MPU Watchdog Timer
  • Five Inter-Integrated Circuit (I2C) Ports
  • HDQ™/1-Wire® Interface
  • SATA Interface
  • Media Local Bus (MLB) Subsystem
  • Ten Configurable UART/IrDA/CIR Modules
  • Four Multichannel Serial Peripheral Interfaces (McSPI)
  • Quad SPI (QSPI)
  • Eight Multichannel Audio Serial Port (McASP) Modules
  • SuperSpeed USB 3.0 Dual-Role Device
  • Three High-Speed USB 2.0 Dual-Role Devices
  • Four MultiMedia Card/Secure Digital/Secure Digital Input Output Interfaces (MMC™/SD®/SDIO)
  • PCI Express® 3.0 Subsystems with Two 5-Gbps Lanes
    • One 2-Lane Gen2-Compliant Port
    • or Two 1-Lane Gen2-Compliant Ports
  • Up to Two Controller Area Network (DCAN) Modules
    • CAN 2.0B Protocol
  • Modular Controller Area Network (MCAN) Module
    • CAN 2.0B Protocol with Available FD (Flexible Data Rate) Functionality
  • Up to 247 General-Purpose I/O (GPIO) Pins
  • Real-Time Clock Subsystem (RTCSS)
  • Device Security Features
    • Hardware Crypto Accelerators and DMA
    • Firewalls
    • JTAG® Lock
    • Secure Keys
    • Secure ROM and Boot
    • Customer Programmable Keys and OTP Data
  • Power, Reset, and Clock Management
  • On-Chip Debug with CTools Technology
  • 28-nm CMOS Technology
  • 23 mm × 23 mm, 0.8-mm Pitch, 760-Pin BGA (ABZ)

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 40
Type Title Date
* Data sheet DRA75xP, DRA74xP Infotainment Applications Processor Silicon Revision 1.0 datasheet (Rev. F) PDF | HTML 10 Dec 2018
* Errata DRA7xx Silicon Errata (Rev. B) PDF | HTML 08 Sep 2024
* User guide DRA77xP, DRA76xP, DRA75xP, DRA74xP Technical Reference Manual (Rev. D) PDF | HTML 25 May 2024
Application note Integrating virtual DRM between VISION SDK and PSDK on Jacinto6 SOC PDF | HTML 05 May 2021
More literature Building your application with security in mind (Rev. E) 28 Oct 2020
Application note IVA-HD Sharing Between VISION-SDK and PSDKLA on Jacinto6 SoC PDF | HTML 24 Aug 2020
Application note AM57x, DRA7x, and TDA2x EMIF Tools (Rev. E) 06 Jan 2020
Application note Integrating New Cameras With Video Input Port on DRA7xx SoCs PDF | HTML 11 Jun 2019
Application note Achieving Early CAN Response on DRA7xx Devices 28 Nov 2018
Application note DRA74x_75x/DRA72x Performance (Rev. A) 31 Oct 2018
Application note Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices 14 Sep 2018
Application note The Implementation of YUV422 Output for SRV 02 Aug 2018
Application note MMC DLL Tuning (Rev. B) 31 Jul 2018
Application note Integrating AUTOSAR on TI SoC: Fundamentals 18 Jun 2018
Application note ECC/EDC on TDAxx (Rev. B) 13 Jun 2018
Application note Tools and Techniques to Root Case Failures in Video Capture Subsystem 12 Jun 2018
Application note Sharing VPE Between VISIONSDK and PSDKLA 04 May 2018
Application note Android Boot Optimization on DRA7xx Devices (Rev. A) 13 Feb 2018
Application note Flashing Utility - mflash 09 Jan 2018
Application note Using Peripheral Boot and DFU for Rapid Development on Jacinto 6 Devices (Rev. A) 30 Nov 2017
Application note Optimizing DRA7xx and TDA2xx Processors for use with Video Display SERDES (Rev. B) 07 Nov 2017
Application note A Guide to Debugging With CCS on the DRA75x, DRA74x, TDA2x and TDA3x Family of D (Rev. B) 03 Nov 2017
Application note Optimization of GPU-Based Surround View on TI’s TDA2x SoC 12 Sep 2017
Application note Using DSS Write-Back Pipeline for RGB-to-YUV Conversion on DRA7xx Devices 14 Aug 2017
Application note Software Guidelines to EMIF/DDR3 Configuration on DRA7xx Devices 12 Jul 2017
White paper Revolutionize the automotive cockpit 02 Jun 2017
Application note Linux Boot Time Optimizations on DRA7xx Devices 31 Mar 2017
Application note Interfacing DRA75x and DRA74x Audio to Analog Codecs (Rev. A) 17 Feb 2017
Application note Early Splash Screen on DRA7x Devices 31 Jan 2017
Application note Quality of Service (QoS) Knobs for DRA74x, DRA75x & TDA2x Family of Devices (Rev. A) 15 Dec 2016
Application note Gstreamer Migration Guidelines 26 Apr 2016
User guide Jacinto6 Android Video Decoder Software Design Specification User's Guide 21 Apr 2016
User guide Jacinto6 Android Video Encoder Software Design Specification User's Guide 21 Apr 2016
Application note Flashing Binaries to DRA7xx Factory Boards Using DFU 14 Apr 2016
Application note Tools and Techniques for Audio Debugging 13 Apr 2016
Application note Debugging Tools and Techniques With IPC3.x 30 Mar 2016
Application note Modifying Memory Usage for IPUMM Applications Loaded IPC 3.x for DRA75x, DRA74x (Rev. A) 15 Jan 2016
White paper Informational ADAS as Software Upgrade to Today’s Infotainment Systems 14 Oct 2014
Application note Guide to fix Perf Issues Using QoS Knobs for DRA74x, DRA75x, TDA2x & TD3x Device 13 Aug 2014
White paper Today’s high-end infotainment soon becoming mainstream 02 Jun 2014

Design & development

Power-supply solutions

Find available power-supply solutions for the DRA74P. TI offers power-supply solutions for TI and non-TI systems on a chip (SoCs), processors, microcontrollers, sensors, and field-programmable gate arrays (FPGAs).

Evaluation board

J6PEVM577P — DRA7xP Evaluation Module

The DRA77xP/DRA76xP-ACD is an evaluation platform designed to allow scalability and re-use across DRA77xP and DRA76xP JacintoTM Infotainment System-on-Chips (SoCs), it is based on Jacinto DRA77xP SoC that incorporates a heterogeneous, scalable architecture that includes a mix of two ARM Cortex-A15 (...)

User guide: PDF
Software development kit (SDK)

PROCESSOR-SDK-ANDROID-AUTOMOTIVE-DRA7X

Processor SDK Linux Automotive

Processor SDK Linux Automotive is the foundational software development platform for TI's Jacinto™ DRAx family of Infotainment SoCs. The software framework allows users to develop feature-rich Infotainment solutions such as reconfigurable digital instrument (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA74P Multi-core SoC processors with ISP and pin-compatible with DRA74x SoC processors DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA76P High performance multi-core SoC processors with ISP for digital cockpit applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier
Digital signal processors (DSPs)
DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-AUTOMOTIVE-DRA7X PROCESSOR-SDK-LINUX-AUTOMOTIVE-DRA7X

Processor SDK Linux Automotive

Processor SDK Linux Automotive is the foundational software development platform for TI's Jacinto™ DRAx family of Infotainment SoCs. The software framework allows users to develop feature-rich Infotainment solutions such as reconfigurable digital instrument (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA746 Dual 1.5 GHz Arm Cortex-A15 SoC processor with graphics & DSP for automotive infotainment & cluster DRA74P Multi-core SoC processors with ISP and pin-compatible with DRA74x SoC processors DRA756 Dual 1.5 GHz A15, dual EVE, dual DSP, extended peripherals SoC processor for infotainment DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA76P High performance multi-core SoC processors with ISP for digital cockpit applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier
Digital signal processors (DSPs)
DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier
Download options
Software development kit (SDK)

PROCESSOR-SDK-RTOS-AUTOMOTIVE-DRA7X

Processor SDK Linux Automotive

Processor SDK Linux Automotive is the foundational software development platform for TI's Jacinto™ DRAx family of Infotainment SoCs. The software framework allows users to develop feature-rich Infotainment solutions such as reconfigurable digital instrument (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA74P Multi-core SoC processors with ISP and pin-compatible with DRA74x SoC processors DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA76P High performance multi-core SoC processors with ISP for digital cockpit applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier
Digital signal processors (DSPs)
DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier
Download options
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It is comprised of a rich suite of tools used to build, debug, analyze and optimize embedded applications. Code Composer Studio is available across Windows®, Linux® and macOS® platforms.

(...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Launch Download options
Operating system (OS)

GHS-3P-INTEGRITY-RTOS — Green Hills INTEGRITY RTOS

The INTEGRITY RTOS from Green Hills Software is the safe and secure foundation for running critical applications and guest operating systems on TI processors using Arm® Cortex-A cores. Its certified separation kernel runs software within protected partitions with certified (...)
Support software

VCTR-3P-MICROSAR — Vector MICROSAR AUTOSAR software for microcontrollers and high-performance computers (HPCs)

MICROSAR and DaVinci product families simplify ECU development with sophisticated embedded software and powerful development tools for both microcontrollers and HPCs. With advanced infrastructure software, you create an optimal basis for your ECUs and simplify all accompanying development tasks (...)
Simulation model

DRA7xxP and TDA2Px BSDL Files

SPRM750.ZIP (34 KB) - BSDL Model
Simulation model

DRA7xxP and TDA2Px IBIS Files

SPRM748.ZIP (36622 KB) - IBIS Model
Simulation model

DRA7xxP and TDA2Px Thermal Model

SPRM749.ZIP (2 KB) - Thermal Model
Calculation tool

CLOCKTREETOOL — Clock Tree Tool for Sitara, Automotive, Vision Analytics, & Digital Signal Processors


The Clock Tree Tool (CTT) for ARM Processors & Digital Signal Processors is an interactive configuration software tool that provides information about device clock tree architecture. This tool allows visualization of the device clock tree. It can also be used to determine the exact register (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
FCCSP (ABZ) 760 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos