Home Interface USB ICs USB hubs & controllers

TUSB2046B

ACTIVE

4-port USB 2.0 12-Mbps USB full-speed hub

Product details

Function USB2 USB speed (Mbps) 12 Type Hub Supply voltage (V) 3.3 Rating Catalog Operating temperature range (°C) -40 to 85
Function USB2 USB speed (Mbps) 12 Type Hub Supply voltage (V) 3.3 Rating Catalog Operating temperature range (°C) -40 to 85
LQFP (VF) 32 81 mm² 9 x 9 VQFN (RHB) 32 25 mm² 5 x 5
  • Fully Compliant With the USB Specification as a Full-Speed Hub: TID #30220231
  • 32-Pin LQFP (1) Package With a 0.8-mm Terminal Pitch or QFN Package With a 0.5-mm Pin Pitch
  • 3.3-V Low-Power ASIC Logic
  • Integrated USB Transceivers
  • State Machine Implementation Requires No Firmware Programming
  • One Upstream Port and Four Downstream Ports
  • All Downstream Ports Support Full-Speed and Low-Speed Operations
  • Two Power Source Modes
    • Self-Powered Mode
    • Bus-Powered Mode
  • Power Switching and Overcurrent Reporting Is Provided Ganged or Per Port
  • Supports Suspend and Resume Operations
  • Supports Programmable Vendor ID and Product ID With External Serial EEPROM
  • 3-State EEPROM Interface Allows EEPROM Sharing
  • Push-Pull Outputs for PWRON Eliminate the Need for External Pullup Resistors
  • Noise Filtering on OVRCUR Provides Immunity to Voltage Spikes
  • Package Pinout Allows 2-Layer PCB
  • Low EMI Emission Achieved by a 6-MHz Crystal Input
  • Migrated From Proven TUSB2040 Hub
  • Lower Cost Than the TUSB2040 Hub
  • Enhanced System ESD Performance
  • No Special Driver Requirements; Works Seamlessly With Any Operating System With USB Stack Support
  • Supports 6-MHz Operation Through a Crystal Input or a 48-MHz Input Clock

(1)JEDEC descriptor S-PQFP-G for low-profile quad flatpack (LQFP).

  • Fully Compliant With the USB Specification as a Full-Speed Hub: TID #30220231
  • 32-Pin LQFP (1) Package With a 0.8-mm Terminal Pitch or QFN Package With a 0.5-mm Pin Pitch
  • 3.3-V Low-Power ASIC Logic
  • Integrated USB Transceivers
  • State Machine Implementation Requires No Firmware Programming
  • One Upstream Port and Four Downstream Ports
  • All Downstream Ports Support Full-Speed and Low-Speed Operations
  • Two Power Source Modes
    • Self-Powered Mode
    • Bus-Powered Mode
  • Power Switching and Overcurrent Reporting Is Provided Ganged or Per Port
  • Supports Suspend and Resume Operations
  • Supports Programmable Vendor ID and Product ID With External Serial EEPROM
  • 3-State EEPROM Interface Allows EEPROM Sharing
  • Push-Pull Outputs for PWRON Eliminate the Need for External Pullup Resistors
  • Noise Filtering on OVRCUR Provides Immunity to Voltage Spikes
  • Package Pinout Allows 2-Layer PCB
  • Low EMI Emission Achieved by a 6-MHz Crystal Input
  • Migrated From Proven TUSB2040 Hub
  • Lower Cost Than the TUSB2040 Hub
  • Enhanced System ESD Performance
  • No Special Driver Requirements; Works Seamlessly With Any Operating System With USB Stack Support
  • Supports 6-MHz Operation Through a Crystal Input or a 48-MHz Input Clock

(1)JEDEC descriptor S-PQFP-G for low-profile quad flatpack (LQFP).

The TUSB2046x is a 3.3-V CMOS hub device that provides one upstream port and four downstream ports in compliance with the Universal Serial Bus (USB) specification as a full-speed hub. Because this device is implemented with a digital state machine instead of a microcontroller, no firmware
programming is required. Fully compliant USB transceivers are integrated into the ASIC for all upstream and downstream ports. The downstream ports support full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. The configuration of the BUSPWR pin selects either the bus-powered or the self-powered mode.

Configuring the GANGED input determines the power switching and overcurrent detection modes for the downstream ports. If GANGED is high, all PWRON outputs switch together and if any OVRCUR is activated, all ports transition to the power-off state. If GANGED is low, the PWRON outputs and OVRCUR inputs operate on a per-port basis.

The TUSB2046x provides the flexibility of using a 6-MHz or a 48-MHz clock. The logic level of the TSTMODE terminal controls the selection of the clock source. When TSTMODE is low, the output of the internal APLL circuitry is selected to drive the internal core of the device. When TSTMODE is high, the TSTPLL/48MCLK input is selected as the input clock source and the APLL circuitry is powered down and bypassed. The internal oscillator cell is also powered down while TSTMODE is high. Low EMI emission is achieved because the TUSB2046x can usee a 6-MHz crystal input. Connect the crystal as shown in Figure 6. An internal PLL then generates the 48-MHz clock used to sample data from the upstream port and to synchronize the 12 MHz used for the USB clock. If low-power suspend and resume are desired, a passive crystal or resonator must be used. However, a 6-MHz oscillator may be used by connecting the output to the XTAL1 pin and leaving the XTAL2 pin open. The oscillator TTL output must not exceed 3.6 V.

For 48-MHz operation, the clock cannot be generated with a crystal using the XTAL2 output because the internal oscillator cell supports only the fundamental frequency. Other useful features of the TUSB2046x include a package with a 0.8-mm pin pitch for easy PCB routing and assembly, push-pull outputs for the PWRON pins eliminate the need for pullup resistors required by traditional open-collector I/Os, and OVRCUR pins have noise filtering for increased immunity to voltage spikes.

The TUSB2046x is a 3.3-V CMOS hub device that provides one upstream port and four downstream ports in compliance with the Universal Serial Bus (USB) specification as a full-speed hub. Because this device is implemented with a digital state machine instead of a microcontroller, no firmware
programming is required. Fully compliant USB transceivers are integrated into the ASIC for all upstream and downstream ports. The downstream ports support full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. The configuration of the BUSPWR pin selects either the bus-powered or the self-powered mode.

Configuring the GANGED input determines the power switching and overcurrent detection modes for the downstream ports. If GANGED is high, all PWRON outputs switch together and if any OVRCUR is activated, all ports transition to the power-off state. If GANGED is low, the PWRON outputs and OVRCUR inputs operate on a per-port basis.

The TUSB2046x provides the flexibility of using a 6-MHz or a 48-MHz clock. The logic level of the TSTMODE terminal controls the selection of the clock source. When TSTMODE is low, the output of the internal APLL circuitry is selected to drive the internal core of the device. When TSTMODE is high, the TSTPLL/48MCLK input is selected as the input clock source and the APLL circuitry is powered down and bypassed. The internal oscillator cell is also powered down while TSTMODE is high. Low EMI emission is achieved because the TUSB2046x can usee a 6-MHz crystal input. Connect the crystal as shown in Figure 6. An internal PLL then generates the 48-MHz clock used to sample data from the upstream port and to synchronize the 12 MHz used for the USB clock. If low-power suspend and resume are desired, a passive crystal or resonator must be used. However, a 6-MHz oscillator may be used by connecting the output to the XTAL1 pin and leaving the XTAL2 pin open. The oscillator TTL output must not exceed 3.6 V.

For 48-MHz operation, the clock cannot be generated with a crystal using the XTAL2 output because the internal oscillator cell supports only the fundamental frequency. Other useful features of the TUSB2046x include a package with a 0.8-mm pin pitch for easy PCB routing and assembly, push-pull outputs for the PWRON pins eliminate the need for pullup resistors required by traditional open-collector I/Os, and OVRCUR pins have noise filtering for increased immunity to voltage spikes.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet TUSB2046x 4-Port Hub for the Universal Serial Bus With Optional Serial EEPROM Interface datasheet (Rev. L) PDF | HTML 28 Jun 2017
* Errata TUSB2046B Errata 03 Oct 2006
Application note TUSB2046B Schematic Checklist 13 Aug 2018
Application note TI USB 1.1/USB 2.0 Hub Frequently Asked Questions 04 Mar 2011

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DP83TC811EVM — DP83TC811 100BASE-T1 to 100BASE-TX automotive Ethernet PHY media converter evaluation module

The DP83TC811EVM is IEEE 802.3bw compliant, supporting 100BASE-T1. The DP83TC811R and DP83822H are configured in RGMII back-to-back, allowing a seamless media conversion from 100BASE-T1 to 100BASE-TX. This design has been tested and validated at UNH for 100BASE-T1 compliance.

The DP83TC811EVM (...)

User guide: PDF
Not available on TI.com
Evaluation board

EVM430-FR6043 — MSP430FR6043 ultrasonic sensing evaluation module

The EVM430-FR6043 evaluation kit is a development platform that can be used to evaluate the performance of the MSP430FR6043 for ultrasonic sensing applications (e.g. Smart Gas Meters). The MSP430FR6043 MCU is an ultra-low-power MCU that integrates an ultrasonic sensing analog front end (USS) for (...)
User guide: PDF
Not available on TI.com
Evaluation board

EVM430-FR6047 — MSP430FR6047 ultrasonic sensing evaluation module

The EVM430-FR6047 evaluation kit is a development platform to evaluate the performance of the MSP430FR6047 MCUs for ultrasonic sensing applications (e.g. smart water meters). The MSP430FR6047 MCU is an ultra-low-power device with an integrated ultrasonic sensing analog front end (USS) for high (...)

User guide: PDF
Not available on TI.com
Evaluation board

EVM430-FR6989 — MSP430FR6989 evaluation module for extended scan interface (ESI) enabled ultra-low power MCU

User guide: PDF
Not available on TI.com
Evaluation board

TPS2071EVM-159 — TPS207x Evaluation Module

  • Bus-powered input voltage range (BP), 0 to 100 mA/port, 4.75 V min to 5.25 V max
  • Self-power input voltage range (SP), 0 to 500 mA/port, 4.85 V min to 5.15 V max
  • Downstream output voltage range in bus-powered mode, 0 to 100 mA/port, 4.4 V min to 5.25 V max
  • Downstream output voltage range in (...)
User guide: PDF
Not available on TI.com
Development kit

MSP-EXP430F5529LP — MSP430F5529 LaunchPad™ development kit for USB

The MSP430™ LaunchPad™ development kit now has USB. The MSP-EXP430F5529LP is a cost-effective and simple development kit for the MSP430F5529 USB microcontroller. It offers an easy way to start developing with the MSP430 MCU, with onboard emulation for programming and debugging as well as buttons (...)
User guide: PDF | HTML
Hardware programming tool

CAPTIVATE-PGMR — MSP430 CapTIvate MCU programmer

The MSP430 CapTIvate MCU programmer is available standalone or as part of the MSP CapTIvate™ MCU development kit, a comprehensive, easy-to-use platform to evaluate MSP430FR2633 microcontroller with capacitive touch technology.  The programmer/debugger board can be used with the (...)
Not available on TI.com
Schematic

TUSB2046B Reference Schematic

SLLR048.ZIP (92 KB)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDM-LC-WATERMTR — Water Meter Reference Design for two LC Sensors, Using Extended Scan Interface (ESI)

One of the challenges in battery operated water meters is to continuously measure the water flow information while consuming as little energy as possible. The EVM430-FR6989 used in this design features a MSP430 FRAM-based microcontroller with 100uA/MHz active-mode current, 450nA standby-mode (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDM-3LC-METER-CONV — Water Meter Reference Design for three LC Sensors, Using Extended Scan Interface (ESI)

One of the challenges in battery operated water meters is to continuously measure the water flow information while consuming as little energy as possible. The EVM430-FR6989 used in this design features a MSP430 FRAM-based microcontroller with 100uA/MHz active-mode current, 450nA standby-mode (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDM-FLOWESI-ETRACE — Code Generation and Optimization With FlowESI GUI and EnergyTrace Reference Design

This reference design highlights the usage of FlowESI GUI and the EnergyTrace technology to help you design and optimize ultra-low-power applications on the EVM430-FR6989.

When designing battery-powered applications, ultra-low power consumption is a key factor in extending the lifetime of a system. (...)

Design guide: PDF
Schematic: PDF
Reference designs

TIDM-OPTICALWATERMTR — Water Meter Reference Design for Optical Sensors, Using Extended Scan Interface (ESI)

One of the challenges in battery operated water meters is to continuously measure the water flow information while consuming as little energy as possible. The EVM430-FR6989 used in this design features a MSP430 FRAM-based microcontroller with 100uA/MHz active-mode current, 450nA standby-mode (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDM-GMR-WATERMTR — Water Meter Reference Design for GMR Sensors, Using Extended Scan Interface (ESI)

One of the challenges in battery operated water meters is to continuously measure the water flow information while consuming as little energy as possible. The EVM430-FR6989 used in this design features a MSP430 FRAM-based microcontroller with 100uA/MHz active-mode current, 450nA standby-mode (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
LQFP (VF) 32 Ultra Librarian
VQFN (RHB) 32 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos