TLV341A

ACTIVE

Single, 5.5-V, 2.2-MHz, 1.25-mV offset operational amplifier with shutdown

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
OPA310 ACTIVE Single, 5.5-V, 3-MHz high-output-current (150 mA) fast-shutdown (1 μs) operational amplifier Higher output current (150mA), higher GBW (3MHz), rail-to-rail inputs and outputs, smaller packages

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.5 Rail-to-rail Out GBW (typ) (MHz) 2.2 Slew rate (typ) (V/µs) 0.9 Vos (offset voltage at 25°C) (max) (mV) 1.25 Iq per channel (typ) (mA) 0.07 Vn at 1 kHz (typ) (nV√Hz) 33 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1.9 Features Shutdown Input bias current (max) (pA) 200 CMRR (typ) (dB) 90 Iout (typ) (A) 0.113 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.2 Input common mode headroom (to positive supply) (typ) (V) -0.5 Output swing headroom (to negative supply) (typ) (V) 0.018 Output swing headroom (to positive supply) (typ) (V) -0.07
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.5 Rail-to-rail Out GBW (typ) (MHz) 2.2 Slew rate (typ) (V/µs) 0.9 Vos (offset voltage at 25°C) (max) (mV) 1.25 Iq per channel (typ) (mA) 0.07 Vn at 1 kHz (typ) (nV√Hz) 33 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1.9 Features Shutdown Input bias current (max) (pA) 200 CMRR (typ) (dB) 90 Iout (typ) (A) 0.113 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.2 Input common mode headroom (to positive supply) (typ) (V) -0.5 Output swing headroom (to negative supply) (typ) (V) 0.018 Output swing headroom (to positive supply) (typ) (V) -0.07
SOT-23 (DBV) 6 8.12 mm² 2.9 x 2.8 SOT-SC70 (DCK) 6 4.2 mm² 2 x 2.1
  • 1.8-V and 5-V Performance
  • Low Offset (A Grade)
    • 1.25 mV Maximum (25°C)
    • 1.7 mV Maximum (–40°C to 125°C)
  • Rail-to-Rail Output Swing
  • Wide Common-Mode Input Voltage Range: –0.2 V
    to (V+ – 0.5 V)
  • Input Bias Current: 1 pA (Typical)
  • Input Offset Voltage: 0.3 mV (Typical)
  • Low Supply Current: 70 µA/Channel
  • Low Shutdown Current:
    10 pA (Typical) Per Channel
  • Gain Bandwidth: 2.3 MHz (Typical)
  • Slew Rate: 0.9 V/µs (Typical)
  • Turnon Time From Shutdown: 5 µs (Typical)
  • Input Referred Voltage Noise (at 10 kHz):
    20 nV/√Hz
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (HBM)
    • 750-V Charged-device model (CDM)
  • 1.8-V and 5-V Performance
  • Low Offset (A Grade)
    • 1.25 mV Maximum (25°C)
    • 1.7 mV Maximum (–40°C to 125°C)
  • Rail-to-Rail Output Swing
  • Wide Common-Mode Input Voltage Range: –0.2 V
    to (V+ – 0.5 V)
  • Input Bias Current: 1 pA (Typical)
  • Input Offset Voltage: 0.3 mV (Typical)
  • Low Supply Current: 70 µA/Channel
  • Low Shutdown Current:
    10 pA (Typical) Per Channel
  • Gain Bandwidth: 2.3 MHz (Typical)
  • Slew Rate: 0.9 V/µs (Typical)
  • Turnon Time From Shutdown: 5 µs (Typical)
  • Input Referred Voltage Noise (at 10 kHz):
    20 nV/√Hz
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (HBM)
    • 750-V Charged-device model (CDM)

The TLV34xx devices are single and dual CMOS operational amplifiers, respectively, with low-voltage, low-power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias current of 1 pA (typical) and an offset voltage of
0.3 mV (typical). For applications requiring excellent dc precision, the A grade (TLV34xA) has a low offset voltage of 1.25 mV (maximum) at 25°C.

These single-supply amplifiers are designed specifically for ultra-low-voltage (1.5 V to 5 V) operation, with a common-mode input voltage range that typically extends from –0.2 V to 0.5 V from the positive supply rail.

The TLV341 (single) and TLV342 (dual) in the RUG package also offer a shutdown (SHDN) pin that can be used to disable the device. In shutdown mode, the supply current is reduced to 45 pA (typical). Offered in both the SOT-23 and smaller SC70 packages, the TLV341 is suitable for the most space-constrained applications. The dual TLV342 is offered in the standard SOIC, VSSOP, and X2QFN packages.

An extended industrial temperature range from –40°C to 125°C makes the TLV34xx suitable in a wide variety of commercial and industrial applications.

The TLV34xx devices are single and dual CMOS operational amplifiers, respectively, with low-voltage, low-power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias current of 1 pA (typical) and an offset voltage of
0.3 mV (typical). For applications requiring excellent dc precision, the A grade (TLV34xA) has a low offset voltage of 1.25 mV (maximum) at 25°C.

These single-supply amplifiers are designed specifically for ultra-low-voltage (1.5 V to 5 V) operation, with a common-mode input voltage range that typically extends from –0.2 V to 0.5 V from the positive supply rail.

The TLV341 (single) and TLV342 (dual) in the RUG package also offer a shutdown (SHDN) pin that can be used to disable the device. In shutdown mode, the supply current is reduced to 45 pA (typical). Offered in both the SOT-23 and smaller SC70 packages, the TLV341 is suitable for the most space-constrained applications. The dual TLV342 is offered in the standard SOIC, VSSOP, and X2QFN packages.

An extended industrial temperature range from –40°C to 125°C makes the TLV34xx suitable in a wide variety of commercial and industrial applications.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet TLV34xx Low-Voltage Rail-to-Rail Output CMOS Operational Amplifiers With Shutdown datasheet (Rev. D) PDF | HTML 29 Apr 2016
Application note Op Amp ESD Protection Structures (Rev. A) PDF | HTML 24 Jan 2023
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Technical article 3 ways to scale an analog input signal PDF | HTML 20 Sep 2016

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Simulation model

TLV342 PSpice Model (Rev. D)

SLOM136D.ZIP (22 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDA-00649 — 4-mA to 20-mA Loop Energy Harvester Reference Design

The TIDA-00649 reference design demonstrates energy harvesting from 4-mA to 20-mA loop-powered systems. The design is simple to insert into existing installations where it scavenges energy from the loop and generates a regulated output voltage. Furthermore, the circuit provides an analog output (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOT-23 (DBV) 6 Ultra Librarian
SOT-SC70 (DCK) 6 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos