TLE2064AM-D

ACTIVE

Military-grade, quad, 36-V, 2-MHz, In to V+, 1.5-mv offset voltage, JFET-input op amp in SOIC-14

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
OPA4991 ACTIVE Quad, 40-V, 4.5-MHz, low-power operational amplifier Rail-to-rail I/O, wider supply range (2.7 V to 40 V), higher GBW (4.5 MHz), lower offset voltage (0.83 mV), lower noise (10.8 nV/√Hz)

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 7 Rail-to-rail In to V+ GBW (typ) (MHz) 2 Slew rate (typ) (V/µs) 3.4 Vos (offset voltage at 25°C) (max) (mV) 4 Iq per channel (typ) (mA) 0.312 Vn at 1 kHz (typ) (nV√Hz) 40 Rating Military Operating temperature range (°C) -55 to 125 Offset drift (typ) (µV/°C) 6 Input bias current (max) (pA) 60 CMRR (typ) (dB) 90 Iout (typ) (A) 0.045 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3 Input common mode headroom (to positive supply) (typ) (V) 1 Output swing headroom (to negative supply) (typ) (V) 1.3 Output swing headroom (to positive supply) (typ) (V) -1.3
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 7 Rail-to-rail In to V+ GBW (typ) (MHz) 2 Slew rate (typ) (V/µs) 3.4 Vos (offset voltage at 25°C) (max) (mV) 4 Iq per channel (typ) (mA) 0.312 Vn at 1 kHz (typ) (nV√Hz) 40 Rating Military Operating temperature range (°C) -55 to 125 Offset drift (typ) (µV/°C) 6 Input bias current (max) (pA) 60 CMRR (typ) (dB) 90 Iout (typ) (A) 0.045 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3 Input common mode headroom (to positive supply) (typ) (V) 1 Output swing headroom (to negative supply) (typ) (V) 1.3 Output swing headroom (to positive supply) (typ) (V) -1.3
SOIC (D) 14 51.9 mm² 8.65 x 6
  • 2× Bandwidth (2 MHz) of the TL06x and TL03x Operational Amplifiers
  • Low Supply Current ... 290 µA/Ch Typ
  • On-chip Offset Voltage Trimming for Improved DC Performance
  • High Output Drive, Specified into 100- Loads
  • Lower Noise Floor Than Earlier Generations of Low-Power BiFETs
  • 2× Bandwidth (2 MHz) of the TL06x and TL03x Operational Amplifiers
  • Low Supply Current ... 290 µA/Ch Typ
  • On-chip Offset Voltage Trimming for Improved DC Performance
  • High Output Drive, Specified into 100- Loads
  • Lower Noise Floor Than Earlier Generations of Low-Power BiFETs

The TLE206x series of low-power JFET-input operational amplifiers doubles the bandwidth of the earlier generation TL06x and TL03x BiFET families without significantly increasing power consumption. Texas Instruments Excalibur process also delivers a lower noise floor than the TL06x and TL03x. On-chip zener trimming of offset voltage yields precision grades for dc-coupled applications. The TL206x devices are pin-compatible with other TI BiFETs; they can be used to double the bandwidth of TL06x and TL03x circuits, or to reduce power consumption of TL05x, TL07x, and TL08x circuits by nearly 90%.

BiFET operational amplifiers offer the inherently-higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption. The TLE206x family features a high-output-drive circuit capable of driving 100- loads at supplies as low as ±5 V. This makes them uniquely suited for driving transformer loads in modems and other applications requiring good ac characteristics, low power, and high output drive.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required and loads should be terminated to a virtual ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies.

The TLE206x are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC- and TLV-prefixes) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate and bandwidth requirements, and output loading. The Texas Instrument TLV2432 and TLV2442 CMOS operational amplifiers are excellent choices to consider.

The TLE206x series of low-power JFET-input operational amplifiers doubles the bandwidth of the earlier generation TL06x and TL03x BiFET families without significantly increasing power consumption. Texas Instruments Excalibur process also delivers a lower noise floor than the TL06x and TL03x. On-chip zener trimming of offset voltage yields precision grades for dc-coupled applications. The TL206x devices are pin-compatible with other TI BiFETs; they can be used to double the bandwidth of TL06x and TL03x circuits, or to reduce power consumption of TL05x, TL07x, and TL08x circuits by nearly 90%.

BiFET operational amplifiers offer the inherently-higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption. The TLE206x family features a high-output-drive circuit capable of driving 100- loads at supplies as low as ±5 V. This makes them uniquely suited for driving transformer loads in modems and other applications requiring good ac characteristics, low power, and high output drive.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required and loads should be terminated to a virtual ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies.

The TLE206x are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC- and TLV-prefixes) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate and bandwidth requirements, and output loading. The Texas Instrument TLV2432 and TLV2442 CMOS operational amplifiers are excellent choices to consider.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet TLE206xx: Excalibur JFET-Input High-Output-Drive uPower Op Amps datasheet (Rev. B) 05 May 2004
* SMD TLE2064AM-D SMD 5962-90809 21 Jun 2016
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note TLE206x/TLE206xA/TLE206xB EMI Immunity Performance 09 Jun 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos