SN74LVCC4245A-EP

ACTIVE

Enhanced Product Octal Dual-Supply Bus Transceiver W/Configurable Output Voltage And 3S Out

SN74LVCC4245A-EP

ACTIVE

Product details

Technology family LVC Bits (#) 8 High input voltage (min) (V) 2 High input voltage (max) (V) 5.5 Vout (min) (V) 2.7 Vout (max) (V) 5.5 Data rate (max) (Mbps) 200 IOH (max) (mA) -24 IOL (max) (mA) 24 Supply current (max) (µA) 130 Features Output enable Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
Technology family LVC Bits (#) 8 High input voltage (min) (V) 2 High input voltage (max) (V) 5.5 Vout (min) (V) 2.7 Vout (max) (V) 5.5 Data rate (max) (Mbps) 200 IOH (max) (mA) -24 IOL (max) (mA) 24 Supply current (max) (µA) 130 Features Output enable Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
TSSOP (PW) 24 49.92 mm² 7.8 x 6.4
  • Controlled Baseline
    • One Assembly Site
    • One Test Site
    • One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree(1)
  • Bidirectional Voltage Translator
  • 4.5 V to 5.5 V on A Port and 2.7 V to 5.5 V on B Port
  • Control Inputs VIH/VIL Levels Are Referenced to VCCA Voltage
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

  • Controlled Baseline
    • One Assembly Site
    • One Test Site
    • One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree(1)
  • Bidirectional Voltage Translator
  • 4.5 V to 5.5 V on A Port and 2.7 V to 5.5 V on B Port
  • Control Inputs VIH/VIL Levels Are Referenced to VCCA Voltage
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

The SN74LVCC4245A is an 8-bit (octal) noninverting bus transceiver that uses two separate power-supply rails. The A port (VCCA) is dedicated to accepting a 5-V supply level, and the configurable B port, which is designed to track VCCB, accepts voltages from 3 V to 5 V. This allows for translation from a 3.3-V to a 5-V environment and vice versa.

The SN74LVCC4245A is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses effectively are isolated. The control circuitry (DIR, OE) is powered by VCCA.

The SN74LVCC4245A is an 8-bit (octal) noninverting bus transceiver that uses two separate power-supply rails. The A port (VCCA) is dedicated to accepting a 5-V supply level, and the configurable B port, which is designed to track VCCB, accepts voltages from 3 V to 5 V. This allows for translation from a 3.3-V to a 5-V environment and vice versa.

The SN74LVCC4245A is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses effectively are isolated. The control circuitry (DIR, OE) is powered by VCCA.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 33
Type Title Date
* Data sheet SN74LVCC4245A-EP datasheet 13 Mar 2007
* VID SN74LVCC4245A-EP VID V6206658 21 Jun 2016
* Radiation & reliability report CLVCC4245AMPWREP Reliability Report 15 Mar 2012
Application note Schematic Checklist - A Guide to Designing With Fixed or Direction Control Translators PDF | HTML 02 Oct 2024
Application note Schematic Checklist - A Guide to Designing with Auto-Bidirectional Translators PDF | HTML 12 Jul 2024
Application note Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 03 Jul 2024
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
TSSOP (PW) 24 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos