
Application Note
Implementing Run-Time Safety and Security With the
C29x Safety and Security Unit

Ibukun Olumuyiwa Application Specific MCU - Automotive

ABSTRACT

The Safety and Security Unit (SSU) is an integrated module in C29x devices that enables run-time functional
safety and cybersecurity protections for application code. The features of the SSU enable robust Freedom
from Interference (FFI), secure task isolation, debug security and firmware update protections in hardware,
maintaining low-latency performance needed for real-time control systems. The SysConfig tool, provided as part
of the MCU SDK, provides an easy-to-use graphical user interface (GUI) for configuring the SSU and enabling
safety and security protections in user applications. This application note examines the various features of the
SSU, and how embedded system developers can use the SysConfig to design and implement run-time safety
and security in real-time applications.

Table of Contents
1 Introduction...2
2 Supplemental Online Information... 2
3 SSU Overview... 3
4 Key Concept Definitions.. 4
5 Safety and Security Goals... 5
6 System Design.. 6
7 Configuring the SSU...8

7.1 Flash SECCFG Region.. 8
7.2 SSU Development Life Cycle...8
7.3 Using the SysConfig Tool... 8

8 Summary... 14
9 References.. 14

List of Figures
Figure 3-1. SSU System Block Diagram (Simplified View)..3
Figure 6-1. Example of Software Partitioning With SSU..7
Figure 7-1. System Security Configuration Page...9
Figure 7-2. Application Module Configuration Example...11
Figure 7-3. Special Modules Configuration Example...11
Figure 7-4. LINK2 Configuration Example... 12
Figure 7-5. Shared Memory Configuration Example... 13

Trademarks
E2E™, Code Composer Studio™, and C2000™ are trademarks of Texas Instruments.
FreeRTOS® is a registered trademark of Amazon Web Services, Inc.
AUTOSAR® is a registered trademark of AUTOSAR Development Partnership.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/sysconfig
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

1 Introduction
The Texas Instruments C29 CPU delivers industry-leading performance for real-time control applications. With
a 128-bit Very Large Instruction Word (VLIW) architecture, 64-bit fixed-point and floating-point operations,
ultra-low latency processing and hardware interrupt prioritization, the C29 is well-equipped to run the most
demanding automotive and industrial control applications. The SSU, in concert with the C29 CPU, helps system
designers meet the most rigorous modern standards for safety and security in the real-time control applications,
without compromising real-time performance. With the SSU, users can achieve true FFI, secure task isolation
and advanced debug and firmware update security, while maintaining the same high-speed and low-latency
processing needed for the most demanding real-time control systems.

This application note describes how to implement run-time application safety and security in a real-time control
system using the C29x CPU and SSU. The C29x, SSU architecture provides dynamic context-sensitive memory
protection, secure task isolation with multiple dedicated CPU stack pointers, and multiuser debug ZONEs for
security.

2 Supplemental Online Information
For detailed descriptions of the C29x CPU and the SSU on a specific device, see the device-specific data sheet
and the corresponding Technical Reference Manual (TRM).

This application report was written using the F29H85x family of devices. The MCU SDK and SysConfig tool
support all F29x platform devices.

• C29x CPU and Instruction Set User’s Guide
• F29H85x and F29P58x Real-Time Microcontrollers Data Sheet
• F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual

Additional support is provided by the TI E2E™ Community.

Introduction www.ti.com

2 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com/lit/pdf/spruj79
https://e2e.ti.com
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

3 SSU Overview
The SSU is an integral part of the C29 CPU subsystem, providing context-sensitive memory protection and
run-time code isolation, debug security, and secure firmware updates. The SSU acts as a firewall between the
C29 CPU and the rest of the system, enforcing user access protection policies and managing debug access
and Flash controller operations. Figure 3-1 shows a simplified overview of the SSU as integrated into the C29
subsystem. The features available in the SSU can be used to achieve true FFI in a real-time control system
without adding software overhead, which can otherwise negatively impact real-time performance. With the SSU,
system designers can combine multiple control and communication functions on the same CPU core, while
keeping each function isolated from the others. This can lead to a reduction in the number of cores required to
reach system goals, or help achieve higher system safety integrity levels.

D
e

b
u

g

P
e

rm
is

s
io

n
s

A
d

d
re

s
s

T
ra

n
s
la

ti
o

n

D
e

b
u

g

P
e

rm
is

s
io

n
s

Safety and Security Unit

Debug Subsystem

In
s
tr

u
c
ti
o

n
 F

e
tc

h
 B

u
s

D
a

ta
 R

e
a

d
 B

u
s
 2

Fetch STACK/ZONE

Decoder

Access Protection Logic

L
IN

K
ID

LINK/STACK/ZONE
A

c
c
e

s
s

P
e

rm
is

s
io

n
s D

a
ta

 W
ri
te

 B
u

s

D
a

ta
 R

e
a

d
 B

u
s
 1

Data Read

Data Read

Data Write

Instruction Fetch

Data Read

Data Read

Data Write

RAM, ROM and Peripherals

Data Access Filter

C29 CPU

Flash ModulesERAD (Breakpoint and Trace Modules)

Instruction Fetch

Figure 3-1. SSU System Block Diagram (Simplified View)

www.ti.com SSU Overview

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

4 Key Concept Definitions
This section contains the definitions of key concepts.

Access
Protection
Range (APR)

This is the basic unit of memory protection in the SSU. An access protection range covers
a specific region of Flash memory, SRAM, or peripherals. Each APR defines read and write
access permissions for every LINK. An APR can also be configured as a code region, which
enables CPU instruction fetches from that memory region.

LINK In a C29 CPU subsystem, LINKs form the basis for context-sensitive memory protection. Each
LINK can represent one or more regions of executable code. The associated LINK identifier is
used to determine what data memory regions (APRs) can be accessed by that code.

STACK STACKs isolate code execution contexts from each other. Each STACK has a dedicated stack
pointer in the C29 CPU, and provides hardware safety and security isolation of code from other
STACKs. Every LINK belongs to one and only one STACK, but a STACK can contain multiple
LINKs.

ZONE ZONEs determine debug and firmware update permissions. While APRs, LINKs, and STACKs
are defined independently for each CPU, ZONEs span the entire device, excluding the
Hardware Security Module (HSM) (which is not governed by the SSU).

HSM The Hardware Security Manager is a self-contained subsystem within the device that provides
key security services, including secure boot, secure storage, debug and firmware update
security, and run-time cryptographic services. The HSM is different from the SSU, which
is an integral part of the application C29 CPU subsystem. The HSM and SSU perform
complementary and orthogonal roles on the device, except for debug authorization: both the
HSM and SSU must authorize access to a resource before debug access is enabled to that
resource.

Partial Debug When a ZONE is enabled for partial debug, the user is allowed to debug CPU execution (halt,
resume, and view CPU registers) but debug read and write accesses to memories that can
otherwise be accessed by LINKs in that ZONE are blocked.

Full Debug When a ZONE is enabled for full debug, the user can debug the CPU and perform all memory
accesses permitted for any LINK within that ZONE.

SECCFG This is a special Flash region that is designated for storing SSU configuration settings. The
values stored in the SECCFG region are loaded into the SSU registers during device boot. Most
of these settings cannot be changed during run time, and can only be modified by programming
new values into SECCFG and resetting the device.

UPP User Protection Policy. This is the collection of SSU configuration settings that are programmed
into the SECCFG region.

Memory
Region

A region of memory configured in SysConfig. This is equivalent to an Access Protection Range
(APR).

Module In SysConfig, a Module consists of a LINK, the code memory regions (executable APRs)
that are associated with that LINK, the data memory regions (data APRs) and peripherals
that belong to the module, and peripheral interrupts associated with the module. In practice,
modules allow the user to organize the application into distinct tasks or partitions that can be
isolated from one another for functional safety and security.

Shared
Memory

In SysConfig, a Shared Memory consists of one or more APRs that are accessible by
multiple Modules. Shared Memories can be used to share data between Modules in a distinct
memory range, while maintaining safety protection for other memory regions belonging to those
modules.

Sandbox In SysConfig, a Sandbox consists of a STACK, and can contain one or more Modules.
RTOS A Real-Time Operating System, such as FreeRTOS® or AUTOSAR®.

Key Concept Definitions www.ti.com

4 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

5 Safety and Security Goals
The Safety and Security Unit enables system designers to accomplish important safety- and security-related
objectives in the design of real-time embedded systems. These objectives include:

1. Memory Protection: An essential element of an embedded microcontroller that supports functional safety
goals is a Memory Protection Unit, or MPU. An MPU enforces access control rules over memories in the
system, to prevent unauthorized reads, accidental overwrites, or unauthorized modifications to code and
data. Memory protection plays an important role in maintaining system stability, reliability, and security. The
SSU provides advanced MPU functionality that is context-sensitive, switching protections in real time without
software intervention.

2. Freedom from Interference: In the ISO 26262 standard, which defines functional safety standards for
automotive electronics, Freedom from Interference (FFI) is defined as the “absence of cascading failures
between two or more elements that can lead to the violation of a safety requirement.” A cascading failure
occurs when one component in the system fails, and the failure of that component causes a different
component in the system to fail; these failures can result in a progressively growing positive feedback loop.
The SSU provides mechanisms to fully isolate multiple different system software components from each
other, such that a safety failure in one component does not compromise the rest of the application.

3. Security Isolation: In addition to safety freedom from interference, the SSU supports security isolation
goals, giving each application component a secure execution environment that protects the confidentiality
and integrity of code and data assets during run time.

4. Real-Time Performance: A critical goal of the SSU is to provide safety and security protections without
impact to real-time performance. Memory protection, security isolation, and other SSU functions are all
performed in real time without software intervention, eliminating extra latency due to supervisor software
overhead. Combined with the industry-leading performance of the C29 CPU, this enables system designers
to combine multiple control functions on the same CPU without sacrificing performance, safety or security
goals, leading to reduced overall system cost.

5. Secure Debug and Firmware Updates: The SSU provides the ability to partition the system software into
multiple user debug ZONEs, enabling multiple teams to securely maintain and debug different software
components on the same chip. The SSU also manages Flash firmware, controlling which users and code are
permitted to perform firmware updates, and enabling mechanisms such as Firmware-Over-The-Air (FOTA)
and Live Firmware Update (LFU) with A, B swapping and rollback protection in hardware.

www.ti.com Safety and Security Goals

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

6 System Design
The first step in configuring the SSU for an application is to determine the required system partitioning. The SSU
provides three levels of hierarchy for partitioning the application subsystem:

1. ZONEs : Each ZONE determines debug access for all C29 CPUs on the chip. ZONEs are designed to
enable multiple code owners or entities to develop and maintain different partitions of an application residing
on the same chip. For instance, if a certain aspect of the embedded application is owned and maintained by
a third-party vendor, then the system can be divided into two ZONEs:
a. ZONE1: Primary user ZONE, owned by the primary system developer;
b. ZONE2: Secondary user ZONE, owned by the third-party developer.

This partitioning enables the third-party developer to develop, debug and maintain an application function on
the same chip without requiring access to the primary user’s code and data assets. Furthermore, each user
ZONE provides two levels of debug authorization:

a. Partial debug – CPU debug commands such as halt, step, and breakpoints allowed, but no memory
access

b. Full debug – Access to memory locations is provided as permitted for all LINKs contained within the
ZONE.

As an example, a secondary user such as a third-party developer can debug an application module in
ZONE2, and also be given partial debug access to ZONE1, so that the secondary user can effectively debug
the application in context without having access to the primary user’s assets.

Each device has 3 user ZONEs available: ZONE1, ZONE2, and ZONE3. ZONE1 is the primary user ZONE;
ZONE2 and ZONE3 are secondary user ZONEs.

2. Sandboxes (STACKs): Sandboxes provide security and safety isolation within a CPU. Each Sandbox is
associated with a STACK in the SSU. Each sandbox has a dedicated physical stack pointer in the CPU that
is inaccessible by other sandboxes, and a dedicated stack memory AP region with read/write permissions
restricted to only code belonging to that sandbox. Special C29 CPU gate instructions are required when
crossing from one STACK to another. These instructions must be inserted by the compiler at the entry
and exit of each function, and at function calls or branches. These mechanisms provide security protection
against malware attacks that attempt to redirect code execution or manipulate the stack.
• A Sandbox consists of an SSU STACK and everything associated with the STACK, including the stack

memory AP region. Each STACK belongs to one ZONE, but a ZONE can contain multiple STACKs. For
each CPU, there are three predefined STACKs:

• STACK0: This STACK is reserved for TI internal use and cannot be configured by the user.
• STACK1: This STACK is primarily used for bootloaders, but can optionally be associated with other user

application code. STACK1 is always associated with ZONE1, and contains only one LINK (LINK1).
• STACK2: This is the primary user STACK. STACK2 is always associated with ZONE1. STACK2 always

contains LINK2, but can also contain other LINKs.
3. Application Modules (LINKs): An application module is a basic partition of a system application. Each

module consists of a single SSU LINK, one or more code memory AP regions containing the code of the
LINKs, all data memory AP regions associated with the LINK, and all peripherals and interrupts associated
with the Module. Typically, the code AP regions contain .text and other linker output sections containing
code, and the data AP regions contain .bss, .const, and other linker output sections containing data and
variables.
• Each LINK enables SSU memory protections, providing safety protection from other LINKs in the CPU.

Every AP region defines access permissions for each LINK. These permissions are enforced in real time
for every instruction that performs a memory access, depending on the LINK ID instruction. Functions
that require safety isolation from each other can be placed in separate Modules. If security isolation is
required, then these Modules are placed in separate sandboxes; if not, the Modules can be placed in the
same sandbox.

• For each CPU, there are three predefined LINKs
a. LINK0: This LINK is reserved for TI internal use and cannot be configured by the user.

System Design www.ti.com

6 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

b. LINK1: This LINK is primarily used for bootloaders, but can optionally be associated with other user
application code. CPU1.LINK1 has some special fixed permissions that enable access to certain
system configuration registers, in addition to AP-defined protections.

c. LINK2: This is the primary user LINK. CPU1.LINK2 is the system security root LINK (SROOT),
and has special fixed permissions that enable access to system configuration registers and override
controls. This LINK typically executes privileged host functions at the RTOS level.

Shared Memory 1

STACK2

AUTOSAR/OS Sandbox

LINK2 (OS/Host)

Private Stack Memory

Code

Data

System Peripherals

(DEVCFG, ESM, DCC, etc.)

STACK3

Control Functions Sandbox

LINK3 (Control Loop 1)

Private Stack Memory

Code

Data

Control Peripherals (ADC,

EPWM, CMPSS, etc.)

LINK4 (Control Loop 2)

Code

Data

Control Peripherals (ADC,

EPWM, CMPSS, etc.)

STACK4

Communications Sandbox

LINK5 (Communication Functions)

Private Stack Memory

Code

Data

Comms Peripherals (CAN,

UART, LIN, SPI, etc.)

STACK5

Common Code Sandbox

LINK6 (Common Code Functions)

Private Stack Memory

Code

Data

Shared Memory 2

Figure 6-1. Example of Software Partitioning With SSU

Figure 6-1 shows an example of SSU system partitioning on a single-CPU, single-ZONE system. In this system,
the RTOS runs in STACK2.LINK2, and is responsible for initializing system configuration, setting up peripherals
and interrupts, and starting the main execution loop. There are two control functions, Control Loop1 and Control
Loop 2. Each of these control functions is placed in a separate Application Module (LINK), and both Application
Modules are placed in the same Sandbox. In this system, safety isolation is required between the two control
functions, but security isolation is not required between the two. A fourth Module hosts communications code,
such as UART or CAN-FD code. Because data coming from an external interface can potentially pose a security
threat to other functions in the system, this Module is placed in a separate Sandbox. Finally, a fifth Module
contains common code functions which are shared between all the other Modules in the system. The LINK
associated with this module is defined as the Access Protection Inheritance LINK (APILINK) for other LINKs. The
Common Code Module is also placed in a separate sandbox to maintain security isolation from the rest of the
system (while maintaining inherited permissions).

SysConfig includes full support for multicore applications. The built-in memory allocator tool automatically
manages memory regions associated with application modules across multiple CPUs, and also manages the
allocation of peripherals across the entire device. The SysConfig tool also includes a Shared Memory feature
that enables the definition of memory regions that can be shared between modules on the same CPU or multiple
CPUs.

www.ti.com System Design

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

7 Configuring the SSU

7.1 Flash SECCFG Region
The Flash SECCFG region is used for storing the User Protection Policy (UPP). This is a special NONMAIN
region of the C29 application Flash banks that is dedicated to SSU configuration and boot settings. The settings
programmed into SECCFG are loaded at device start-up into SSU memory-mapped registers, and, in most
cases, locked until the next device reset. For each primary CPU in the device (that is, odd-numbered C29 CPU,
for example: CPU1, CPU3), there are two SECCFG sectors: the base sector, and the reserve sector. These are
designed such that one sector can be erased and programmed with new configuration values while the other is
active.

Note
Do not try to erase and reprogram a currently active SECCFG sector. If a device reset occurs
during the process of erasing and programming, the device subsequently fails to boot and becomes
inoperable. Always program new configurations into the alternate SECCFG sector address. The Flash
address translation logic automatically routes this address to the current inactive SECCFG sector
during program and erase operations. The SysConfig tool automatically allocates the SECCFG image
to the alternate sector in the generated .out file to enable the correct update procedure.

To protect the integrity of the SSU user protection policy, the SECCFG sector includes a CRC value that is
checked at boot time. This CRC covers access protection settings, LINK and STACK configuration, Flash write
and Flash erase protections, Flash update permissions, debug settings, boot settings, and the SSU operating
mode. Debug passwords are excluded from this CRC computation.

A comprehensive map of the SECCFG sector is available in the device technical reference manual.

7.2 SSU Development Life Cycle
The SSU can be configured to operate in one of three modes: SSUMODE1, SSUMODE2, and SSUMODE3.
These operating modes are intended to facilitate the development process as the user implements safety and
security features into a system design. The SSU can be reconfigured to change from any operating mode to any
other operating mode, as long as the user has the necessary permissions to update the SECCFG sector.

Units shipped from Texas Instruments start out in SSUMODE1. In this mode, the entire memory map range is
mapped to LINK2 (the security root LINK), and all LINKs have full read and write access to all AP-configurable
memory regions. Hard-coded protections remain active even in SSUMODE1; however, since all code runs as
LINK2, there are effectively no restrictions on user code.

In SSUMODE2, AP region protections are enforced, but debug and Flash update protections remain disabled.
For best results, fully validate application functionality in SSUMODE1 first, then implement SSU settings and test
them in SSUMODE2. Once validation of run-time safety and security settings is completed, debug passwords
can be configured, and the device can be placed in SSUMODE3. In this mode, debug ports are closed by
default, authentication is enforced, and Flash update protections are active.

Note
Flash write and Flash erase protections are permanent and cannot be reversed, irrespective of the
SSUMODE setting. This feature is intended for use cases where the user needs to make a certain
portion of Flash code immutable, for example, for the purpose of implementing a security algorithm.
Do not attempt to configure Flash write and Flash erase protections before finalizing device Flash
contents.

7.3 Using the SysConfig Tool
SysConfig is a graphical user interface (GUI) tool that provides an easy-to-use method for configuring
TI microcontroller products, including F29x Real-Time Control MCUs. SysConfig automatically generates
initialization code for the device, including peripherals, interrupts, pin multiplexing initialization, and more.
SysConfig also automatically identifies device setup errors and provides helpful guidance to rectify configuration
issues, provides graphical visualizations, and enables easy porting of applications between different devices.

Configuring the SSU www.ti.com

8 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

C29 SysConfig is available as part of the device MCU SDK, and requires the SysConfig tool, which is delivered
built-in with the Code Composer Studio™ (CCS) integrated development environment (IDE), and is also available
as a standalone tool for use with other development environments.

C29 SysConfig is a comprehensive tool for defining and implementing SSU protection and isolation within
an F29x application. The tool provides an easy-to-use flow for defining application partitions, allocating code
and data sections, defining protections for memory and peripherals, and implementing debug security options.
C29 SysConfig automatically generates all the required code and output files required to implement these
protections, including the SECCFG sector image, application linker command file, header files, and any required
initialization code.

7.3.1 Enabling System Security Configuration

The first step to enabling SSU functionality in an application is to add the System Security option in SysConfig,
by clicking the (+) button to the right of the module name in the left bar, see Figure 7-1.

Figure 7-1. System Security Configuration Page

In the System Security page, there are several configuration option groups. The first of these is the Security
Mode, which contains settings for SSU operation mode, UPP revision number, and Flash bank mode. For more
information on Flash bank modes, see the device technical reference manual.

Note
Selecting a Flash bank mode here does not cause the bank mode to be programmed into the device.
This selection only informs the SysConfig tool about the intended bank mode configuration for the
device, so that memory allocation can be performed correctly. To program the device to a new bank
mode, use the CCS Flash plug-in, or a Flash programmer tool such as UniFlash.

The System Security page also includes configuration options for selecting the device boot mode, configuring
Flash update protections, debug passwords, and locking SSU registers. Some of these settings, such as debug
passwords and Flash update owner settings, require SSUMODE3 operation to take effect.

www.ti.com Configuring the SSU

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/UNIFLASH
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

7.3.2 Configuring Application Modules

SysConfig provides an easy way to create AP ranges and configure LINK permissions based on object files,
libraries, and input sections. When a new Application Module is created, SysConfig automatically creates a
LINK, together with a standard set of AP regions:

• A code region that executes out of Flash (ModuleName_codeAPR_Flash)
• [Optional] A code region that executes out of RAM (ModuleName_codeAPR_RAM)
• A variable data region in RAM (ModuleName_dataAPR_RW)
• A read-only data region that can optionally be placed in RAM (ModuleName_dataAPR_RO)

In addition to the standard regions, the user can configure custom section names to be associated with the
Application Module, by selecting the Use Custom Sections checkbox, and specifying custom sections to be
added. SysConfig adds all the defined AP regions to the SSU settings, and configures the associated LINK to
have the appropriate permissions for each region. In addition, an output section is created in the linker command
file for each AP region, instructing the linker to place input sections in that memory region as configured.

To associate code functions and data with the Application Module, simply add file names to the Files to
be included input field, minus the file extension. Libraries can also be added to the Module by editing the
corresponding input field (with the library file extension included). To select specific objects from a library, use
linker command file syntax, for example myLibrary.lib<myFuncs1.o>. That is all that needs to be done:
SysConfig automatically assigns the .text, .bss, .data, .rodata, and .const input sections for each
object to the corresponding output sections in the linker command file.

To allocate memory to the module, simply specify the amount of memory required for each APR type (Flash
code, RAM code, RW data, RO data). SysConfig automatically arranges AP regions in memory, selecting the
best memory type as required for minimum wait states. In cases where an Application Module must execute
from RAM instead of Flash to meet performance requirements, select the Place .text section in RAM checkbox.
When this checkbox is selected, SysConfig creates a new RAM code region, and configures the linker command
file to load the associated code from Flash at boot and run from RAM. Read-only or constant data such as
look-up tables can also be placed in RAM for zero-wait-state access, if desired.

In addition to code and data memory regions, existing peripherals that have been configured through SysConfig
can also be auto-allocated to each Application Module. Two drop-down select fields are provided for enabling
either read-write access or read-only access to the specified peripherals. Additionally, peripheral interrupts can
easily be added using the Interrupts Included field. This option configures the PIPE module to assign the correct
execution LINK to the selected peripheral interrupts.

The Module Memory Regions drop-down frame can be expanded to show the details of each AP region that has
been created for the current Application Module. This frame also provides a few additional configuration options:

• Use 0 WS Memory only: Restricts RAM code to zero-wait-state RAM.
• Create equivalent RTDMA MPU region: Creates an MPU region with the same start and end address for

DMA transfers.
• Share with other cores: Enables a memory region to be used by multiple CPUs.

Configuring the SSU www.ti.com

10 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

Figure 7-2. Application Module Configuration Example

7.3.3 Configuring Special Modules

SysConfig provides options to directly configure Modules that have predefined functions in the system:

• LINK2 – the system Security Root LINK
• LINK1 – the bootloader LINK
• The Common Code Module, for access protection inheritance

Figure 7-3. Special Modules Configuration Example

www.ti.com Configuring the SSU

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

After enabling special modules, each module can then be configured by expanding the drop-down box. The
following sections explain the special Modules in more detail.

7.3.3.1 LINK2 Configuration

LINK2 is the most secure LINK on each CPU. LINK2 has elevated privileges, including the ability to access
secure CPU registers and perform supervisory tasks. In most cases, RTOS layer functions are placed in LINK2.
CPU1.LINK2 in particular has special device-wide elevated privileges, including:

• Ability to write to device configuration registers
• Ability to write to certain SSU registers
• Ability to configure the RTDMA, including MPU configuration

Place all code and data sections that are responsible for performing initial system configuration and board
configuration and running operating system functions in LINK2. Some default sections are automatically
configured by SysConfig, including C initialization functions from the libc.a library.

Figure 7-4. LINK2 Configuration Example

7.3.3.2 LINK1 Configuration

CPU1.LINK1 is primarily used for bootloaders, and has extra hard-coded privileges to support bootloader
functions, such as the ability to write to certain system configuration registers. LINK1 can also be used as a
conventional user LINK; however, adding non-bootloader-related code and data to LINK1 is not recommended
except as a last resort when all other LINKs are already in use.

When any peripheral boot mode is configured in the Boot Settings group, SysConfig automatically configures
LINK1 to have access to the respective peripherals required for that boot mode to function, for example, CAN,
UART, or SPI. These peripherals are automatically added to the LINK1 module by SysConfig, in addition to
certain peripherals that are always required for device boot, such as IPC and the HSM mailbox.

7.3.3.3 Adding Shared Memory

Shared memory regions are special access protection regions (APRs) that are accessible by multiple application
modules. In SysConfig, shared memories can be added by selecting the Shared Memory tab on the System

Configuring the SSU www.ti.com

12 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

Security page, and clicking the Add button. Multiple shared memories can be added, limited by the total number
of APRs available on the CPU (including APRs that have been defined for the various Application Modules). For
each shared memory, source files can be included; SysConfig adds the .bss, .data, .const, and .rodata
sections from these files as configured. Custom section names can also be defined to be included.

For each shared memory, you can select which application modules require read-only permission, and which
modules require write permission. SysConfig automatically configures the APR permissions as defined for the
LINK for each module.

Figure 7-5. Shared Memory Configuration Example

7.3.4 Defining Sandboxes

Use Sandboxes in SysConfig to define groups of Application Modules that must have security isolation from
other parts of the application. Each Sandbox is associated with an SSU STACK, and contains at least one
Application Module, as well as a stack memory AP range. All LINKs associated with the Application Modules
in the Sandbox have read-write access to the Sandbox stack memory; all other LINKs have no access. Each
Sandbox is associated with one debug ZONE.

SysConfig defines a SECURE_GROUP in the linker command file for each Sandbox. This setting causes the
linker to require protected calls for all function calls from other STACKs into the Sandbox STACK. By default,
any unprotected call into a SECURE_GROUP causes the linker to generate an error. SysConfig provides an
option to auto-generate trampolines and landing calls to satisfy the protected call requirement. When enabling
this option, be sure to review the output linker map file to confirm that no undesired cross-STACK trampolines to
untrusted code are generated.

Note
Cross-stack trampolines can add latency due to the requirement to save and restore
CPU registers to or from stack memory, potentially impacting application performance. For
best performance, implement protected function calls directly in application code by adding
__attribute__((c29_protected_call)) to the function definition.

Note
STACK1 configuration can be accessed under the Special Modules tab.

www.ti.com Configuring the SSU

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

8 Summary
The C29x SSU enables advanced safety and security features for real-time control applications, including
a novel context-sensitive memory and peripheral-protection feature that eliminates software overhead while
switching between tasks or servicing interrupts, and advanced debug security options. With the easy-to-use
SysConfig tool, system designers can divide an application into multiple partitions for safety and security
isolation, and automatically allocate object files, libraries, and peripherals to each of these partitions. Shared
memory resources can also be defined to be used by multiple application modules. SysConfig automatically
handles the allocation of memories across the device to various application partitions, with full support for
multicore configurations. The tool generates all required output files for implementing the desired protection
policy, which can then be built into an application .out image.

9 References

1. Texas Instruments, C2000™ SysConfig Application Note
2. Texas Instruments, TI Resource Explorer: C2000™ real-time microcontrollers
3. Texas Instruments, Code Composer Studio (CCS) IDE

• Integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processor
products

• SysConfig tool is delivered integrated in CCS (built-in SysConfig support)
4. Texas Instruments, SysConfig Standalone Version

• SysConfig standalone version can be used alongside other IDEs that do not have a built-in SysConfig
tool

Summary www.ti.com

14 Implementing Run-Time Safety and Security With the C29x Safety and
Security Unit

SPRADK2 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spracx3
https://dev.ti.com/tirex/explore/node?node=AKE6fSN9liZ4rMc2dn4u9w
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/sysconfig
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADK2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADK2&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Supplemental Online Information
	3 SSU Overview
	4 Key Concept Definitions
	5 Safety and Security Goals
	6 System Design
	7 Configuring the SSU
	7.1 Flash SECCFG Region
	7.2 SSU Development Life Cycle
	7.3 Using the SysConfig Tool
	7.3.1 Enabling System Security Configuration
	7.3.2 Configuring Application Modules
	7.3.3 Configuring Special Modules
	7.3.3.1 LINK2 Configuration
	7.3.3.2 LINK1 Configuration
	7.3.3.3 Adding Shared Memory

	7.3.4 Defining Sandboxes

	8 Summary
	9 References

