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One of the most common issues with operational 

amplifier (op amp) circuits is stability. In this article, 

I’ll answer three important questions with regards to 

stability:

• How much phase margin do you need for a reliable 

design?

• How do you compensate an unstable circuit?

• What drop-in solutions are available for stability 

issues?

How much phase margin do you need?

Op-amp loop stability is measured in phase margin, 

which is the difference in the output signal phase shift 

from 360 degrees when the output closed-loop gain goes 

below unity. Some shift is inherent to every op amp 

(for example, the dominant pole), while additional shift 

depends on the application and components surrounding 

the amplifier.

Different rules of thumb recommend 30, 45 or even 60 

degrees of phase margin, but how much do you really 

need to ensure reliable performance? For traditional 

Miller-compensated op amps, it is possible to simulate 

typical process variations and observe the resulting 

impact on phase margin.

Figure 1 approximates the open-loop gain (Aol) and 

output impedance (Zo) of an op amp with a 1MHz 

unity-gain bandwidth and Zo = 300Ω. Over process 

variation, the value of the Miller capacitor (C26) can 

vary approximately ±30%, and an additional ±30% 

(approximate) over temperature. This variation gives a 

total error of ±30% × ±30%, which is the same as ±30% 

+ ±9%, or ±39% variation. Since the value of the Miller 

capacitor changes the placement of the dominant pole 

in the Aol of the op amp, this variation can significantly 

impact the unity-gain bandwidth and phase margin, 

which is why these specifications are always given as 

typical values, even for precision amplifiers and high-

speed amplifiers.
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Figure 1. Open-loop gain and output impedance PSpice® for TI circuit
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The amplifier in Figure 1 is set with a load resistance and capacitance so that the feedback loop has 45 degrees 

of phase margin. Running a Monte Carlo analysis on the dominant factors of the loop stability – the Miller capacitor, 

open-loop output impedance and passive devices surrounding the amplifier – will show an estimate of how changes over 

process variation and temperature will impact the phase margin of the circuit.

Figure 2 plots the resulting phase margin. For this analysis, I applied ±40% variation to the Miller capacitor, ±15% 

variation for Zo, ±10% for the load capacitor and ±5% for the load resistor. These are the expected internal tolerances 

for the Miller capacitor and Zo, as well as typical component precision for many general-purpose applications.

PhaseMargin(DB(V(INM_1)-V(INP_1)),P(V(INM_1)-V(INP_1)))
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n samples = 5000

n divisions = 40

mean = 44.9231

sigma = 5.1933

minimum = 19.7486

10th %ile = 38.1327

median = 45.1627

90th %ile = 51.3578

maximum = 59.9017

3*sigma = 15.5799

Figure 2. 5,000-run Monte-Carlo analysis across estimated process variation and temperature shifts

Across this variation, the phase margin of the feedback 

loop sees a minimum phase margin of 19 degrees, a 

26 degree shift from 45 degrees. Over process variation 

and temperature, the circuit would remain stable if it 

had approximately 27 degrees of phase margin, although 

45 degrees will offer both good transient performance 

and settling time. The closer the phase margin gets 

to 0 degrees, the more the output will overshoot the 

final value, and the longer it will take to settle to the 

final output value. 45 degrees of phase margin provides 

enough design tolerance to allow a shift in phase margin 

without compromising settling time or seeing excessive 

overshoot.

While these simulations are helpful in understanding the 

effects of Miller capacitor variation on performance, it’s 

the circuit designer who is ultimately responsible for the 

performance of their design. Simulations are only as 

accurate as the included nonidealites, assuming many 

ideal properties in order to make the calculation less 

intensive.
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Compensation schemes

There are cases where it is not possible to reduce a 

capacitor on the output of an op amp, for either voltage 

rail regulation, filter capacitance for an analog-to-digital 

converter, or other circuit needs. In such cases, how do 

you achieve proper phase margin? There are multiple 

compensation schemes that can increase phase margin, 

but in this article, I’ll focus on two, shown in Figure 

3 and Figure 4: an isolation resistor (Riso) and Riso 

dual feedback. When designing these circuits, it can be 

difficult to determine what value of Riso you need to 

stabilize the feedback loop.
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Figure 3. Riso compensation scheme.
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Figure 4. Riso dual feedback scheme.

Riso is the simplest method for isolating the phase 

lag introduced by the load capacitance. It involves 

placing a resistor between the feedback loop and the 

load capacitor. One drawback, however, is decreased 

DC accuracy when the output has a load current. The 

amount of DC error will be the value of the isolation 

resistor multiplied by the output current.

The Riso dual feedback compensation scheme 

overcomes this DC inaccuracy. The circuit enables a 

high-frequency path through the feedback capacitor 

to stabilize the feedback loop and a DC path that 

allows the op amp to compensate for the I × R drop 

over the isolation resistor. You can find these values 

either mathematically or through simulation by trying 

different values of Riso and seeing where there is stable 

operation.

Let’s try an approach that uses mathematical analysis 

with simulated results.
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The two main components for accurate modeling 

of amplifier loop stability are the open-loop gain 

and open-loop output impedance. TI’s standard op-

amp macromodel, the Green-Williams-Lis (GWL) model, 

accurately characterizes these parameters for all op 

amps released after 2016. Many of the more popular 

op amps, such as the LM2904 and its newer version, 

the LM2904B, also have GWL macromodels created 

for them. The library file for the SPICE macromodels 

includes a header that details what parameters are 

accurately reflected in the SPICE model. If the open-loop 

gain and open-loop output impedance are modeled, it 

is likely that the stability of the model will reflect the 

silicon’s performance.

Ensuring the accuracy of the SPICE model enables 

you to analyze the loop stability of your circuit and 

mathematically calculate the best value for Riso. The 

value of Riso that ensures 45 degrees of phase margin 

should create a zero in the feedback loop at the 

intersection point of the feedback factor (1/beta) and the 

amplifier open-loop gain. For extra assurance, setting the 

zero where the open-loop gain is 20dB, you can see 

the maximum positive phase shift from the zero in the 

feedback loop.

Compensation Formula

Large capacitive load

RISO (minimum) Riso= 12  π  fAOL Loaded  =  0dB  CLOAD
RISO Riso= 12  π  fAOL Loaded  =  20dB  CLOAD
RISO plus dual feedback RF ≥ RISO  1005 × Riso × CLRF ≤ CF ≤ 10 × Riso × CLRF

Table 1. Formulas for calculating isolation resistor value and 
feedback components for Riso dual feedback.

Part of the power of PSpice for TI is you can set up, 

archive, and share simulations and equations for later 

schematics. Since the evaluation for Riso and Riso dual 

feedback are formulaic and easily repeatable, you can 

leverage these template projects to eliminate the need 

to remember the formulas to calculate Riso or the Rf/Cf 

for the Riso dual feedback circuit across four common 

op-amp circuits. Simply download the PSpice for TI 

project, drop in the op amp you want to analyze, enter 

the parameters that complete the specific circuit that 

needs stabilizing, and run the simulation to find the 

appropriate value of Riso that you need. These projects 

can also compensate circuits that are unstable from 

capacitance on the inverting terminal, or those with very 

large feedback resistors.

Circuit Type PSpice for TI Project

Buffer Amplifier https://www.ti.com/lit/zip/
sbomcj2

Inverting Amplifier https://www.ti.com/lit/zip/
sbomcj0

Non-inverting Amplifier https://www.ti.com/lit/zip/
sbomci9

Difference Amplifier https://www.ti.com/lit/zip/
sbomcj1

The drop-in solution

There is also a solution when you don’t want extra 

compensation circuitry, or it’s not feasible to add it. 

TI’s OPA994 device family has a special compensation 

structure that is stable across capacitive loads, which is 

possible because the bandwidth of the device changes 

when the output sees different capacitive loads. Keeping 

the bandwidth constantly lower than the pole introduced 

by the output impedance and capacitive load will 

maintain the stability of the amplifier, regardless of what 

capacitor you place on the output. Figure 5 illustrates 

the phase margin for different values of load capacitance 

with no external compensation resistor, taken from the 

OPA994 data sheet.
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Figure 5. Phase margin over various capacitive loads in unity 
gain.

Every design decision comes with a cost in addition to 

a benefit, and the OPA994 device family is no different. 

A more complex design results in a larger device, which 

can be more costly than simpler devices. Additionally, 

this means that the device cannot fit into TI’s smallest 

packages, such as the 0.64mm2 extra-small outline no-

lead (X2SON) package. This design is currently only 

available in a bipolar amplifier, so if you require the 

low-input bias current of a complementary metal-oxide 

semiconductor (CMOS), this device may have too high of 

an input bias current.

There are many benefits associated with a bipolar 

amplifier, including lower noise and more bandwidth, 

for less quiescent current than CMOS devices. The full 

trade-off of bipolar vs. CMOS can be weighed on a 

circuit-by-circuit basis [1]. Overall, the OPA994 can in 

many cases serve as a drop-in solution for stability.

Conclusion

In the initial design stage, the main question is how much 

phase margin is sufficient for reliable performance over 

process variation and temperature. If the phase margin 

of the initial implementation is not sufficient, multiple 

compensation schemes are available to increase the 

phase margin to an acceptable level. These solutions 

are given through pre-configured, easy-to-use projects 

in PSpice for TI. Finally, if there is a project already in 

production that does encounter a stability issue, use the 

drop-in solution proposed.
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