
Application Note
TPS25751 and TPS26750 EEPROM Update Over I2C

Aya Khedr

ABSTRACT

The TPS25751 and TPS26750 is a highly integrated stand-alone USB Type-C® and Power Delivery (PD) 
controller optimized for applications supporting USB-C PD Power. The PD Controller application binary can 
be pushed over I2C to the PD controller using the I2Ct port, or the PD controller can read from an external 
EEPROM at target address 0x50 on the I2Cc port. When the host must update the Patch Bundle used for 
booting, the host must follow a particular process. The EEPROM-update process uses 4CC ASCII commands to 
enable the host to download the patch bundle onto the external EEPROM.

Table of Contents
1 Introduction.............................................................................................................................................................................2
2 EEPROM Boot Flow................................................................................................................................................................2

2.1 Boot Process......................................................................................................................................................................2
2.2 Updating the EEPROM Image........................................................................................................................................... 3
2.3 Commands.........................................................................................................................................................................6
2.4 EEPROM Update Example................................................................................................................................................ 7

3 Source Code Example..........................................................................................................................................................10
3.1 UpdateRegionOfEeprom()............................................................................................................................................... 10
3.2 UpdateRegionOfEeprom_Step1...................................................................................................................................... 10
3.3 UpdateRegionOfEeprom_Step2().................................................................................................................................... 11
3.4 UpdatingRegionOfEeprom_Step3()..................................................................................................................................11
3.5 UpdatingRegionOfEeprom_Step4()..................................................................................................................................11
3.6 WriteRegionPointer()........................................................................................................................................................12

4 Recovering From EEPROM Failure.....................................................................................................................................13
5 Summary............................................................................................................................................................................... 14
6 References............................................................................................................................................................................ 14

Trademarks
USB Type-C® is a registered trademark of USB Implementers Forum.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


1 Introduction
This application note details the EEPROM update process of the device by enabling external hosts to program 
the patch bundles onto the attached external EEPROM using the host interface of the device.

The document also details the EEPROM boot flow, how to update the EEPROM image, and an EEPROM update 
example through flow charts and code examples.

2 EEPROM Boot Flow
During the boot process, the PD controller can load the Patch Bundle from the external EEPROM connected to 
the I2Cc port as described in the following. After the PD controller is in the APP mode, that is MODE register 
reads as APP, the host can write to the EEPROM as described in the following to update the Patch Bundle 
used for booting the PD controller. During the process the previous Patch Bundle is kept intact so that the PD 
controller can boot from the Patch Bundle in case errors occur when writing the new Patch Bundle into the 
EEPROM.

The Patch Bundle contains a FW patch image in addition to a set of configurations that set the default value of 
the Host Interface (HI) registers.

The EEPROM is divided into two regions to allow for it being updated without invalidating the previous Patch 
Bundle until the new Patch Bundle has been verified. The active region is the one containing the latest Patch 
Bundle.

2.1 Boot Process
At boot, the PD controller can first read the Header_ID from the Low Region at the address LowRegionStart 
and LowAppConfigOffset. If any error occurs in reading the Low Region Header_ID, the PD controller can then 
read the Header_ID from the High Region at the address HighRegionStart and HighAppConfigOffset. If any error 
occurs in reading the High Region Header_ID, the PD controller can loop back and try the Low Region again. 
The PD controller can only make two attempts, after that PD controller aborts the EEPROM loading process.

If the PD controller reads the correct Header_ID (PD controller is expecting 0xACE0_0001) in the Low Region, 
then it can begin reading the Patch Bundle from the Low Region. If there is a CRC error while reading the Patch 
Bundle, the PD controller does not attempt to read from the High Region. If the PD controller reads the correct 
Header_ID in the High Region, then it can begin reading the Patch Bundle from the High Region. If there is a 
CRC error while reading the Patch Bundle, the PD controller can attempt to read from the Low Region. However, 
the PD controller does not make more than two attempts on any region.

Therefore, when updating one of the regions of the EEPROM it is critical to verify the new Patch Bundle in the 
region before pointing the Region Start to it.

If the EEPROM loading process is aborted, then the PD controller can update the BOOT_STATUS register 
accordingly and assert the INT_EVENTx.ReadyForPatch interrupt. the PD controller then waits indefinitely for 
the host to load a patch over the I2Cc port or to issue a GAID 4CC command to reboot the PD controller. This 
behavior also occurs when there is no EEPROM present.

Figure 2-1 shows the memory map of the EEPROM and where the pointers and offsets reside assuming that 
the EEPROM has initially been written with the same Patch Bundle in both regions. The PD controller looks 
for the Header_ID of the Low Region at address LowRegionStart and LowAppConfigOffset, and it looks for the 
Header_ID of the High Region at the address HighRegionStart and HighAppConfigOffset.

Introduction www.ti.com

2 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


LowRegionStart

LowAppConfigOffset

HighRegionStart

HighAppConfigOffset

 0x0000

0x0400

LowRegionStart+LowAppConfigStart

0x03FC

0x07FC
Header_ID: ACE0_0001

Header_ID: ACE0_0001

Low Region 
Pointer

High Region 

Pointer

Low Region

High Region

Patch Bundle

Patch Bundle

HighRegionStart+HighAppConfigStart

Figure 2-1. EEPROM Memory Map

Note
The external EEPROM shall be programmed with a Full Flash binary the very first time the platform is 
powered up so that the region headers are set up correctly. A Full Flash binary file can be generated 
from the USBCPD Application Customization Tool. The device tool can also generate a Low Region 
binary, and this file cam be used by the external host for the EEPROM update.

2.2 Updating the EEPROM Image
When the host must update the Patch Bundle used for booting it must follow the process described in this 
section. The top-level flow is to update the region that the PD controller did NOT boot from as shown in Figure 
2-2. The top-level flow executes the function UpdateRegionOfEeprom() illustrated in Figure 2-3.

System needs to update EEPROM

after PD controller boots successfully

Execute UpdateRegionOfEeprom(1)

This updates High Region and sets Region 

Pointers so that the PD controller will boot 

from High Region.

Finished Successfully? 

/��µ��Z'�/�[��}�

reboot using the 

new Patch Bundle

Yes

No

Finished Successfully?
Yes

Handle Error

No

Execute UpdateRegionOfEeprom(0)

This updates Low Region and sets Region 

Pointers so that the PD controller will boot 

from Low Region.

Read BOOT_STATUS register 0x2D

BOOT_STATUS.region0eepromerr=1 

OR BOOT_STATUS.region0invalid=1 ?

Yes No

Figure 2-2. Flow for Updating the EEPROM

www.ti.com EEPROM Boot Flow

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/USBCPD-APPLICATION-CUSTOMIZATION-TOOL
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


Move on to next chunk 

of data to write

N = N + 1;

UpdateRegionOfEeprom(i) 

(i=0 means low region, i=1 means high region)

N = 1

i = 0 (Low)?

NewRegPointer=0, 

NewRegStart = 0x0800

OldRegPointer=0x0400, 

OldRegStart = 0x4400

NewRegPointer=0x0400, 

NewRegStart = 0x4400

OldRegPointer=0, 

OldRegStart = 0x0400

Yes No

Handle Error

No

Yes

DATA1�  0?

YesNo
All Data already written?

No

Finished

DATA1�  0?

Read DATA1

Yes

Update Low Region Update High Region

WriteRegionPointer(NewRegPointer,NewRegStart)

Restore New Region 

Pointer

Step 1

Step 3

InData = chunk #N of image to write to 

EEPROM (page size up to 32 bytes)

ExecCmd([&>Á�[, InData)

Step 2

WriteRegionPointer(NewRegPointer, 0)

Erase New Region Pointer
WriteRegionPointer(OldRegPointer, 0)

Erase Old Region PointerStep 4

Write DATA1 = RegionStart

Write CMD1 = Z&>ÀÇ[

ExecCmd(Z&>ÀÇ[, None)

No

Yes

DATA1�  0?

ExecCmd(Z&>��[, NewRegionStart)

Figure 2-3. Details of the UpdateRegionOfEeprom() Function Used to Update EEPROM

EEPROM Boot Flow www.ti.com

4 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


CMD1�  InCommand?
Yes

No

Read CMD1Delay 10ms

ExecCmd(InCommand, InData)

If InData != None, Write DATA1 = InData

Write CMD1 = InCommand

CMD1�  0?
No

Yes

Read DATA1

Figure 2-4. Details of the ExecCmd() Block

Yes

No

Yes

DATA1�  0?

WriteRegionPointer(Pointer, Value)

No

Yes

DATA1�  Value?

Make sure the region 

pointer is written 

correctly.

No

Yes

DATA1�  0?

ExecCmd(Z&>��[, Pointer)

ExecCmd(Z&>Á�[, Value)

ExecCmd(Z&>��[, Pointer)

Figure 2-5. Details of the WriteRegionPointer() Block

www.ti.com EEPROM Boot Flow

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


2.3 Commands
The EEPROM-update process uses the 4CC ASCII commands listed in Table 2-1.

Table 2-1. 4CC ASCII Commands
Name of 4CC Command ASCII Input DataX Length

(In Bytes)
Output DataX Length

(In Bytes)
Description

Flash Memory Read FLrd 4 16 The FLrd Command reads the flash 
at the specified address

Flash Memory Write Start 
Address

FLad 4 1 The FLad Command sets start 
address in preparation the flash write

Flash Memory Write FLwd 64 1 The FLwd Command writes data 
beginning at the flash start address 
defined by the FLad Command. The 
address is auto-incremented

Flash Memory Verify FLvy 4 1 The FLvy Command verifies if the 
patch or configuration is valid

Cold reset request GAID 0 0 The GAID Command causes a cold 
restart of the PD Controller processor. 
The GAID command is used at the 
end of the FW update procedure to 
re-boot the TPS25751/TPS26750 and 
reload the new FW version from non-
volatile Flash memory

To execute a 4CC command, the host application shall follow the below sequence:

1. If the 4CC command requires an input, the application shall first write the input data into the Data1 (0x09) 
register.

2. The application shall then write the 4CC command characters into the corresponding Cmd1 (0x08) register.
3. The application shall wait until the four byte content of Cmd1 register reads the following – Applications can 

either poll, or set and use the Cmd1Complete event:
• 0x00 indicating that the command is successfully executed.
• or, CMD indicating that the command's execution has failed.

If the command is successfully executed, the application shall proceed to read the n byte content of the Data1 
register which will contain the output. Refer the device's Host Interface TRM for more details on the 4CC 
commands TPS25751 Technical Reference Manual.

EEPROM Boot Flow www.ti.com

6 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slvucr8
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


2.4 EEPROM Update Example
In the following example, the assumption is that the initial state of the EEPROM is that the Low Region and the 
High Region both have the same Patch Bundle. The PD controller can boot from the Low Region. Figure 2-6 
shows the EEPROM memory map for this initial condition.

0x0000_0800

0x0000_0000

0x0000_4400

0x0000_0000

LowRegionStart: 0x0000

HighRegionStart: 0x0400

LowRegionStart+LowAppConfigStart: 0x0800

LowAppConfigOffset: 0x03FC

HighAppConfigOffset: 0x07FC
Header_ID: ACE0_0001

Header_ID: ACE0_0001

Low Region 

Pointer

High Region 

Pointer

Low Region

High Region

PatchBundle

(Version 1)

PatchBundle

(Version 1)

HighRegionStart+HighAppConfigStart: 0x4400

Figure 2-6. Initial State of the EEPROM

When the host must update the Patch Bundle that the PD controller uses for booting, it first erases the 
High Region pointer so that if there is an interruption while writing the new Patch Bundle to the High 
Region, it is guaranteed the PD controller does not attempt to load it. Specifically, Step 1 of the function 
UpdateRegionOfEeprom(1) from Figure 2-3 is executed, and Figure 2-7 shows the memory map after the High 
Region pointer has been erased successfully. If booted in this state, Patch Bundle (Version 1) is loaded from 
Low Region.

0x0000_0800

0x0000_0000

0x0000_0000

0x0000_0000

LowRegionStart: 0x0000

HighRegionStart: 0x0400

LowRegionStart+LowAppConfigStart: 0x0800

LowAppConfigOffset: 0x03FC

HighAppConfigOffset: 0x07FC
Header_ID: ACE0_0001

Header_ID: ACE0_0001

Low Region 

Pointer

High Region 

Pointer

Low Region

High Region

PatchBundle

(Version 1)

PatchBundle

(Version 1)

0x4400

Figure 2-7. State of the EEPROM following UpdateRegionOfEeprom(1) Step 1

Next, the host writes the new Patch Bundle (Version 2) to the High Region. Specifically, Step 2 of the function 
UpdateRegionOfEeprom(1) from Figure 2-3 is executed, and Figure 2-8 shows the memory map following this 
step. Note that if the PD controller boots with the EEPROM in this state, the controller does still load Patch 
Bundle (Version 1) from the Low Region.

www.ti.com EEPROM Boot Flow

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


0x0000_0800

0x0000_0000

0x0000_0000

0x0000_0000

LowRegionStart: 0x0000

LowRegionStart+LowAppConfigStart: 0x0800

LowAppConfigOffset: 0x03FC

Header_ID: ACE0_0001

Header_ID: ACE0_0001

Low Region 

Pointer

High Region 

Pointer

Low Region

High RegionPatchBundle

(Version 2)

HighRegionStart: 0x0400

HighAppConfigOffset: 0x07FC

PatchBundle

(Version 1)

0x4400

Figure 2-8. State of the EEPROM following UpdateRegionOfEeprom(1) Step 2

Next, the host can verify the contents of the EEPROM High Region using the FLvy command. If that 
succeeds, then the host can write 0x4400 into HighRegionStart at address 0x0400. This happens in Step 3 
of UpdateRegionOfEeprom(1) in Figure 2-3, and Figure 2-9 shows the memory map after this is done. If the PD 
controller reboots with the EEPROM in this state, it can still first attempt to boot from the Low Region.

0x0000_0800

0x0000_0000

0x0000_4400

0x0000_0000

LowRegionStart: 0x0000

LowRegionStart+LowAppConfigStart: 0x0800

LowAppConfigOffset: 0x03FC

Header_ID: ACE0_0001

Header_ID: ACE0_0001

Low Region 

Pointer

High Region 

Pointer

Low Region

High Region

HighRegionStart: 0x0400

HighAppConfigOffset: 0x07FC

PatchBundle

(Version 2)

PatchBundle

(Version 1)

HighRegionStart+HighAppConfigStart: 0x4400

Figure 2-9. State of EEPROM following UpdateRegionOfEeprom(1) Step 3

The last step is to erase the LowRegionStart value so that the PD controller can boot from the High Region. 
The host can use the WriteRegionPointer() functionality as shown in Step 4 of UpdateRegionOfEeprom(1) 
as illustrated in Figure 2-3. Figure 2-10 shows the memory map after Step 4 is complete. Because the 
LowRegionStart is now 0, the contents of the Low Region have no impact on how the PD controller boots.

EEPROM Boot Flow www.ti.com

8 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


0x0000_0000

0x0000_0000

0x0000_4400

0x0000_0000

LowRegionStart: 0x0000

0x0800

LowAppConfigOffset: 0x03FC

Header_ID: ACE0_0001

Header_ID: ACE0_0001

Low Region 

Pointer

High Region 

Pointer

Low Region

High Region

HighRegionStart: 0x0400

HighAppConfigOffset: 0x07FC

PatchBundle

(Version 2)

PatchBundle

(Version 1)

HighRegionStart+HighAppConfigStart: 0x4400

Figure 2-10. State of EEPROM following UpdateRegionOfEeprom(1) Step 4

The next time the host must update the EEPROM image the host can execute UpdateRegionOfEeprom(0), 
and the process can proceed in a similar manner. The host can optionally execute UpdateRegionOfEeprom(0) 
immediately with the same new Patch Bundle it has just written to the High Region.

www.ti.com EEPROM Boot Flow

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


3 Source Code Example
This section gives example source code to implement the EEPROM flow described previously.

3.1 UpdateRegionOfEeprom()

const uint32_t region_ptr_start[NUM_OF_REGIONS] = {0x0 , 0x400 };
const uint32_t region_ptr_appconfig_offset[NUM_OF_REGIONS] = {0x3FC, 0x7FC };
const uint32_t region_addr_patchbundle[NUM_OF_REGIONS] = {0x800, 0x4400};
static int32_t UpdateRegionOfEeprom()
{
s_AppContext *const pCtx = &gAppCtx;
int32_t retVal = -1;
UART_PRINT("\n\rActive Region is [%d] - Region being updated is [%d]\n\r",\
pCtx->active_region, pCtx->inactive_region);
/*
* Region-0/Region-1 is currently active, hence update Region-1/Region-0 respectively
*/
retVal = UpdateRegionOfEeprom_Step1(pCtx->inactive_region);
if(0 != retVal)
{
UART_PRINT("Region[%d] update Step 1 failed.! Next boot will happen from Region[%d]\n\r",\
pCtx->inactive_region, pCtx->active_region);
goto error;
}
/*
* Region-0/Region-1 is currently active, hence update Region-1/Region-0 respectively
*/
retVal = UpdateRegionOfEeprom_Step2(pCtx->inactive_region);
if(0 != retVal)
{
UART_PRINT("Region[%d] update Step 2 failed.! Next boot will happen from Region[%d]\n\r",\
pCtx->inactive_region, pCtx->active_region);
goto error;
}
/*
* Write is through. Now verify if the content/copy is valid.
* Update the corresponding region-pointer point to the new region.
*/
retVal = UpdateRegionOfEeprom_Step3(pCtx->inactive_region);
if(0 != retVal)
{
UART_PRINT("Region[%d] update Step 3 failed.! Next boot will happen from Region[%d]\n\r",\
pCtx->inactive_region, pCtx->active_region);
goto error;
}
/*
* Invalidate the region-pointer of the old region.
*/
retVal = UpdateRegionOfEeprom_Step4(pCtx->active_region);
if(0 != retVal) {goto error;}
error:
SignalEvent(APP_EVENT_END_UPDATE);
return retVal;
}

3.2 UpdateRegionOfEeprom_Step1

static int32_t UpdateRegionOfEeprom_Step1(uint8_t region_number)
{
int32_t retVal = -1;
/*
* First erases the region-pointer so that if there is an interruption while writing
* the new Patch Bundle, it is guaranteed the PD controller won't try to load it.
*/
retVal = WriteRegionPointer(region_number, 0);
RETURN_ON_ERROR(retVal);
error:
return retVal;
}

Source Code Example www.ti.com

10 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


3.3 UpdateRegionOfEeprom_Step2()

static int32_t UpdateRegionOfEeprom_Step2(uint8_t region_number)
{
uint8_t outdata[MAX_BUF_BSIZE] = {0};
s_TPS_flad fladInData = {0};
uint32_t bytesUpdated = 0;
int32_t retVal = -1;
int32_t idx = -1;
/*
* Set the start address for the next write
*/
fladInData.flashaddr = region_addr_patchbundle[region_number];
retVal = ExecCmd(FLad, sizeof(fladInData), (uint8_t *)&fladInData,
TASK_RET_CODE_LEN, &outdata[0]);
RETURN_ON_ERROR(retVal);
if(0 != outdata[1]) {retVal = -1; goto error;}
for (idx = 0; idx < gSizeLowregionArray/PATCH_BUNDLE_SIZE; idx++)
{
/*
* Execute FLwd with PATCH_BUNDLE_SIZE bytes of patch-data
* in each iteration
*/
retVal = ExecCmd(FLwd, PATCH_BUNDLE_SIZE,\
(uint8_t *)&tps6598x_lowregion_array[idx * PATCH_BUNDLE_SIZE],
TASK_RET_CODE_LEN, &outdata[0]);
RETURN_ON_ERROR(retVal);
if(0 != outdata[1]) {retVal = -1; goto error;}
bytesUpdated += PATCH_BUNDLE_SIZE;
Board_IF_Delay(75); /* in uSecs */
}
/* Push more bytes if any */
if(gSizeLowregionArray > bytesUpdated)
{
retVal = ExecCmd(FLwd, gSizeLowregionArray - bytesUpdated,\
(uint8_t *)&tps6598x_lowregion_array[idx * PATCH_BUNDLE_SIZE],
TASK_RET_CODE_LEN, &outdata[0]);
RETURN_ON_ERROR(retVal);
if(0 != outdata[1]) {retVal = -1; goto error;}
}
error:
return retVal;
}

3.4 UpdatingRegionOfEeprom_Step3()

static int32_t UpdateRegionOfEeprom_Step3(uint8_t new_region_number)
{
uint8_t outdata[MAX_BUF_BSIZE] = {0};
s_TPS_flvy flvyInData = {0};
int32_t retVal = -1;
flvyInData.flashaddr = region_addr_patchbundle[new_region_number];
retVal = ExecCmd(FLvy, sizeof(flvyInData), (uint8_t *)&flvyInData, \
TASK_RET_CODE_LEN, &outdata[0]);
if(0 != outdata[1]) {retVal = -1; goto error;}
retVal = WriteRegionPointer(new_region_number, region_addr_patchbundle[new_region_number]);
RETURN_ON_ERROR(retVal);
error:
return retVal;
}

3.5 UpdatingRegionOfEeprom_Step4()

static int32_t UpdateRegionOfEeprom_Step4(uint8_t old_region_number)
{
int32_t retVal = -1;
retVal = WriteRegionPointer(old_region_number, 0);
RETURN_ON_ERROR(retVal);
error:
return retVal;
}

www.ti.com Source Code Example

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


3.6 WriteRegionPointer()

static int32_t WriteRegionPointer(const uint8_t region_number, const uint32_t value)
{
uint8_t outdata[MAX_BUF_BSIZE] = {0};
s_TPS_flad fladInData = {0};
uint32_t regionVal = 0;
int32_t retVal = -1;
fladInData.flashaddr = region_ptr_start[region_number];
retVal = ExecCmd(FLad, sizeof(fladInData), (uint8_t *)&fladInData, TASK_RET_CODE_LEN, &outdata[0]);
RETURN_ON_ERROR(retVal);
if(0 != outdata[1]) {retVal = -1; goto error;}
retVal = ExecCmd(FLwd, sizeof(uint32_t), (uint8_t *)&value, TASK_RET_CODE_LEN, &outdata[0]);
RETURN_ON_ERROR(retVal);
if(0 != outdata[1]) {retVal = -1; goto error;}
retVal = ExecCmd(FLrd, sizeof(uint32_t), (uint8_t *)&region_ptr_start[region_number],
sizeof(s_TPS_flrdassert), &outdata[0]);
RETURN_ON_ERROR(retVal);
regionVal = (outdata[4] << 24) | (outdata[3] << 16) | (outdata[2] << 8) | (outdata[1] << 0);
if(value != regionVal) {retVal = -1; goto error;}
error:
return retVal;
}

Source Code Example www.ti.com

12 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


4 Recovering From EEPROM Failure
If the EEPROM loading terminates without a valid Patch Bundle, then the INT_EVENTx.ReadyForPatch interrupt 
gets asserted. The host must read the BOOT_STATUS register 0x2D to discover why booting from EEPROM 
failed. Then the host must force the PD controller into the APP mode by pushing a patch using the PBMx 
commands (see Technical Reference Manual for details). This can be the full Patch Bundle that is normally 
in EEPROM. After the PD controller is in the APP mode, the host can write to the EEPROM using the FLxx 
commands and correct the problem. Figure 4-1 shows the recommended boot flow.

This boot flow requires the host to be able to correct the EEPROM. If the host requires the PD controller to 
enable the sink path before it can boot, then the appropriate dead-battery configuration must be selected by the 
ADCINx pins. In this case, the SafeMode dead-battery configuration is not applicable.

System boots

Read MODE register 0x03

MODE = Z�WW�Z? Boot Successful
Yes

No

Read INT_EVENT

INT_EVENT.ReadyForPatch = 1?

Delay 10ms

No

Wµ�Z���À�o]������Z��µv�o��µ�]vP�ZW�DÆ[�

commands

Yes

h���Z&>ÆÆ[��}��}�������Z��]u�P�

/��µ��Z'�/�[

Figure 4-1. Recommended Boot Flow for EEPROM

www.ti.com Recovering From EEPROM Failure

SLVAFL1 – OCTOBER 2024
Submit Document Feedback

TPS25751 and TPS26750 EEPROM Update Over I2C 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


5 Summary
The TPS25751 and TPS26750 application binary can be pushed to the PD controller over I2C using the I2Ct 
port, or the PD controller can read it from an external EEPROM. When the host must update the Patch Bundle 
used for booting, it must follow a particular sequence.

The host shall implement the below sequence to update the patch-bundle:

• Using FLrd command, the host shall query the device for the address of the region on external EEPROM that 
is to be updated.

• The host shall then set the start address for the next write using FLad command, and start sending the 
patch-bundle 32 bytes at a time using FLwd command.

• The device automatically increments the write-address after the successful execution of FLwd– The host 
does not need to set the start address for every write request.

• The host shall then verify the contents of the EEPROM using FLvy command.
• After both regions are updated, the host shall cold-reset the device using GAID – The device can go through 

the boot sequence all over again, and load the updated patch-bundle.

6 References
• Texas Instruments, TPS25751 Technical Reference Manual.
• Texas Instruments, TPS26750 Technical Reference Manual.

Summary www.ti.com

14 TPS25751 and TPS26750 EEPROM Update Over I2C SLVAFL1 – OCTOBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLVUCR8
https://www.ti.com/lit/pdf/SLVUCR7
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFL1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFL1&partnum=


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 EEPROM Boot Flow
	2.1 Boot Process
	2.2 Updating the EEPROM Image
	2.3 Commands
	2.4 EEPROM Update Example

	3 Source Code Example
	3.1 UpdateRegionOfEeprom()
	3.2 UpdateRegionOfEeprom_Step1
	3.3 UpdateRegionOfEeprom_Step2()
	3.4 UpdatingRegionOfEeprom_Step3()
	3.5 UpdatingRegionOfEeprom_Step4()
	3.6 WriteRegionPointer()

	4 Recovering From EEPROM Failure
	5 Summary
	6 References

