
Subsystem Design
Connected Diode Matrix

1 Description
The Connected Diode Matrix example demonstrates how to use a matrix format to reduce the number of
necessary GPIO pins when using six or more LEDs. This specific example uses nine LEDs and six GPIOs to
form and control a 3 × 3 LED matrix. The matrix format creates a grid that uses two GPIOs per LED (or diode).
This format is especially useful when creating a sign or display out of LEDs. The GPIO pins for the LED matrix
are divided into row and column pins. When the row pins connect the cathodes of the LEDs, as Figure 1-1
shows, the matrix is a common row cathode. Common row anode is when the row pins connect the anodes of
the LEDs. Depending on the configuration of the LEDs in the LED matrix, the row and column pins are set to
active high or active low. For this subsystem example, the row pins are active low and the column pins are active
high. For the LED matrix to function properly, the LEDs in the matrix must be controlled one row at a time. The
application code for this example uses a state machine to cycle continuously through the rows to turn the LEDs
on and off.

MSPM0Gx/
MSPM0Lx

220 Ω

220 Ω

220 Ω

ROW 1

ROW 2

ROW 3

COL 3

COL 2

COL 1

Figure 1-1. Subsystem Functional Block Diagram

www.ti.com Description

SLAAEC7 – SEPTEMBER 2024
Submit Document Feedback

Connected Diode Matrix 1

Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/global?id=mspm0_sdk_lp_mspm0l1306_msp%20subsystems_diode_matrix
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC7&partnum=MSPM0G3507SRGE

2 Required Peripherals
This application requires six GPIO pins and timer interrupts.

Table 2-1. Required Peripherals
Subblock Functionality Peripheral Use Notes

GPIO subblock 6 GPIO pins All pins used for this example are on the same port

Timer Timer interrupts Timer interrupts are used to cycle through the rows on the LED
matrix

3 Compatible Devices
Based on the requirements in Table 2-1, the compatible devices are listed in Table 3-1. The corresponding EVM
can be used for quick evaluation.

Table 3-1. Compatible Devices
Compatible Devices EVM

MSPM0Lx LP-MSPM0L1306

MSPM0Gx LP-MSPM0G3507

4 Design Steps
1. Determine the number of LEDs used in the matrix as well as the matrix dimensions. The matrix dimensions

determine the number of GPIO pins needed.
2. Separate the GPIO pins into row pins and column pins.
3. Configure all row and column pins as outputs.
4. Determine the mask value for the column pins by taking the bit-wise OR of all the column pin GPIO values.
5. Create the memory table and the memory table update function.
6. Create an enumeration table for the row update state machine to cycle between rows.
7. Configure timer interrupts and write application code for the row update state machine and to increment the

LED state.
8. Write application code to set the display period and to update the memory table with new column pin values

as the display changes.

5 Design Considerations
1. Number of LEDs and matrix dimensions: The matrix dimension determines the number of GPIO pins

needed to run the matrix. For example, a 16 LED matrix can use 8 pins in a 4 × 4 matrix or 10 pins in a 2 × 8
matrix.

2. LED configuration: The active states of the row and column pins is dependent on whether the matrix is in
common row cathode or common row anode.

3. Column pin values: Column pin values are set in a memory table. The exact values are determined by
which pins are selected and the respective column mask. For ease of setup, selecting pins that are in
numerical order with no gaps is the easiest.

4. Column and row pin connections: When connecting pins to the LED matrix, application programming
is easiest if the row pins start from the topmost row (moving down) and the column pins start from the
right-most column (moving left).

5. Timer interrupts: The speed of the interrupts affects the display period and how long each row of LEDs is
on per the state machine cycle. This specific example interrupts every 5ms, preventing the human eye from
noticing any flickering.

6. Updating the memory table: The specific method of updating the memory table depends on the
application. This example increments a counter (otherwise known as the display period) up to a specified
value. When the counter reaches that value, the memory table is updated to set a new display.

Required Peripherals www.ti.com

2 Connected Diode Matrix SLAAEC7 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC7&partnum=MSPM0G3507SRGE

6 Software Flow Chart
Figure 6-1 shows the software flow chart for this subsystem example and explains the timer interrupt routine and
state machine used to control the LED matrix.

Initialize Device

Initialize Timer Interrupt

TIMER ISR

SWITCH
rowState

rowState = ROW_1
Turn ON current row

Turn OFF previous row
Use memory map to turn

columns ON/OFF

Set rowState = ROW_2

rowState = ROW_2
Turn ON current row

Turn OFF previous row
Use memory map to turn

columns ON/OFF

Set rowState = ROW_N

rowState = ROW_N
Turn ON current row

Turn OFF previous row
Use memory map to turn

columns ON/OFF

Set rowState = ROW_1

Increment LED_displayPeriod

Write to memory map based on
LED_displayPeriod

Break and Return

Wait for Interrupt

Figure 6-1. Application Software Flow Chart

7 Application Code
This application makes use of the TI System Configuration tool (SysConfig) graphical interface to generate the
configuration code for the device peripherals. Using a graphical interface to configure the device peripherals
streamlines the application prototyping process.

There are a few key variables that this example uses: the number of rows, the column mask value, the display
period duration, and a counter to track the number of interrupts. The number of rows is a defined value that is
used to build the memory table array. The column mask is equivalent to the bitwise OR of the GPIO values of
all of the column pins used. The column mask is used with the memory table to determine which column pins
need to be on or off per row at a given time. The display period variable is multiplied by the duration of time per
timer interrupt to determine the amount of time that a single memory table write is used. For this example, the
display period value is defined as 100 which equates to a display period time of half a second. The counter, or
gLedState, is used to track the number of interrupts in relation to the display period value. This makes sure
that the memory table is written to every display period.

#define NUMBER_OF_ROWS 3
#define COL_MASK 0x38
#define LED_DISPLAY_PERIOD 100 /* timer period = 5 ms, so display period = 500 ms */
volatile uint32_t gLedState = 0;
void LED_updateTable(uint8_t rowNumber, uint8_t LEDs);

www.ti.com Software Flow Chart

SLAAEC7 – SEPTEMBER 2024
Submit Document Feedback

Connected Diode Matrix 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC7&partnum=MSPM0G3507SRGE

The next snippet of code shows the enumeration table as well as the timer Interrupt Request (IRQ). The
enumeration table defines the row states that the rowState switch cycles through in the timer IRQ. For each
rowState (or row pin), the current row is turned on, the previous row is turned off, and the columns are
set by comparing the column mask value with the memory table value. The next rowState is then set. This
example cycles sequentially from row one to row N and back to one. Before leaving the timer IRQ, gLedState
is incremented to track the number of interrupts for each display period.

typedef enum {
 ROW_1,
 ROW_2,
 ROW_3
}rowNumber;

rowNumber rowState = ROW_1;

void LED_STATE_INST_IRQHandler(void) {
 switch (DL_TimerG_getPendingInterrupt(LED_STATE_INST)){
 case DL_TIMER_IIDX_ZERO:
 /* State machine to auto cycle from row 1 to row N and repeat */
 switch (rowState){
 case ROW_1:
 /* Turn on ROW_1, Turn off ROW_3 */
 DL_GPIO_clearPins(ROW_PORT, ROW_ROW_1_PIN);
 DL_GPIO_setPins(ROW_PORT, ROW_ROW_3_PIN);

 /* Set COLUMN values */
 DL_GPIO_writePinsVal(COLUMN_PORT, COL_MASK, gLedMemoryTable[0]);
 rowState = ROW_2;
 break;
 case ROW_2:
 /* Turn on ROW_2, Turn off ROW_1 */
 DL_GPIO_clearPins(ROW_PORT, ROW_ROW_2_PIN);
 DL_GPIO_setPins(ROW_PORT, ROW_ROW_1_PIN);

 /* Set COLUMN values */
 DL_GPIO_writePinsVal(COLUMN_PORT, COL_MASK, gLedMemoryTable[1]);
 rowState = ROW_3;
 break;
 case ROW_3:
 /* Turn on ROW_3, Turn off ROW_2 */
 DL_GPIO_clearPins(ROW_PORT, ROW_ROW_3_PIN);
 DL_GPIO_setPins(ROW_PORT, ROW_ROW_2_PIN);

 /* Set COLUMN values */
 DL_GPIO_writePinsVal(COLUMN_PORT, COL_MASK, gLedMemoryTable[2]);
 rowState = ROW_1;
 break;
 }

 /* Increment LED_STATE */
 gLedState++;

 break;
 default:
 break;
 }
}

Application Code www.ti.com

4 Connected Diode Matrix SLAAEC7 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC7&partnum=MSPM0G3507SRGE

In the main code, all that is done is to write to the memory table every display period. This repeats indefinitely.
This particular code uses binary to make determining which LED is on easier as the layout of 1s and 0s mimics
the matrix layout. The binary value is 1 if an LED is on and 0 if an LED is off.

while(1){
 __WFI();
 /* Flash TI on repeat in half second increments */
 if (gLedState == LED_DISPLAY_PERIOD){ /* Display "T" for one display period */
 LED_updateTable(1, 0b111);
 LED_updateTable(2, 0b010);
 LED_updateTable(3, 0b010);
 } else if (gLedState == LED_DISPLAY_PERIOD*2){ /* Blank for one display period */
 LED_updateTable(1, 0b000);
 LED_updateTable(2, 0b000);
 LED_updateTable(3, 0b000);
 } else if (gLedState == LED_DISPLAY_PERIOD*3){ /* Display "I" for one display period */
 LED_updateTable(1, 0b111);
 LED_updateTable(2, 0b010);
 LED_updateTable(3, 0b111);
 } else if (gLedState == LED_DISPLAY_PERIOD*4){ /* Blank for one display period */
 LED_updateTable(1, 0b000);
 LED_updateTable(2, 0b000);
 LED_updateTable(3, 0b000);
 } else if (gLedState > LED_DISPLAY_PERIOD*4){ /* Reset gLedState and start over */
 gLedState = 0;
 }
}

8 Hardware Design
This specific subsystem example requires nine LEDs, three resistors, and at least six wires. To setup the matrix,
arrange the LEDs in 3 × 3 rows. Connect the cathodes of each row of LEDs together. Then, connect the
anodes of each column of LEDs together. Connect a 220Ω resistor to each column line. From there, connect
the row lines and column lines to the correct device pins based on the device configuration. See Figure 1-1 for
connection guidelines.

www.ti.com Hardware Design

SLAAEC7 – SEPTEMBER 2024
Submit Document Feedback

Connected Diode Matrix 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC7&partnum=MSPM0G3507SRGE

9 Results
Figure 9-1 showcases the intended results of the "T" display period for this application. The top half of the figure
shows the state of each row as the application state machine cycles through each row per interrupt. The bottom
half of the figure shows what the composite image over a full cycle is. This is how the matrix appears to the
human eye.

ON ON ON

OFF OFF OFF

OFF OFF OFF ON

OFF OFF OFF

OFFOFFOFF

OFF OFF

ON

OFF OFF OFF

OFF OFF

OFF OFF OFF

ROW 1 =
ON

ROW 1 =
OFF

ROW 1 =
OFF

ROW 2 =
OFF

ROW 3 =
OFF

ROW 2 =
ON

ROW 3 =
OFF

ROW 2 =
OFF

ROW 3 =
ON

COL 3 =
ON

COL 2 =
ON

COL 1 =
ON

COL 3 =
OFF

COL 2 =
ON

COL 1 =
OFF

COL 3 =
OFF

COL 2 =
ON

COL 1 =
OFF

ON ON ON

OFF ON OFF

OFF ON OFF

Composite image over a full cycle

Figure 9-1. Results

10 Additional Resources
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0L LaunchPad™

• Texas Instruments, MSPM0G LaunchPad™

• Texas Instruments, MSPM0 Academy

11 E2E
See TI's E2E™ support forums to view discussions and post new threads to get technical support for utilizing
MSPM0 devices in designs.

12 Trademarks
LaunchPad™ and E2E™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

Results www.ti.com

6 Connected Diode Matrix SLAAEC7 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://dev.ti.com/tirex/global?id=MSPM0-ACADEMY
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC7&partnum=MSPM0G3507SRGE

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flow Chart
	7 Application Code
	8 Hardware Design
	9 Results
	10 Additional Resources
	11 E2E
	12 Trademarks

