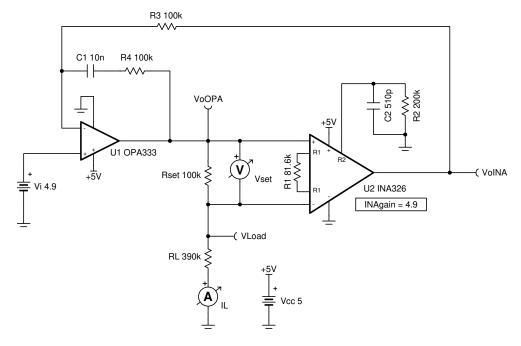
# Low-Level Voltage-to-Current Converter Circuit




#### Masashi Miyagawa

### **Design Goals**

| Input      |                   | Output            |                   | Supply          |                 | Load Resistance (R <sub>L</sub> ) |                   |
|------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------------------------|-------------------|
| $V_{iMin}$ | V <sub>iMax</sub> | I <sub>LMin</sub> | I <sub>LMax</sub> | V <sub>cc</sub> | V <sub>ee</sub> | R <sub>LMin</sub>                 | R <sub>LMax</sub> |
| 0.49V      | 4.9V              | 1µA               | 10μΑ              | 5V              | 0V              | Ω0                                | 390kΩ             |

#### **Design Description**

This circuit delivers a precise low-level current,  $I_L$ , to a load,  $R_L$ . The design operates on a single 5V supply and uses one precision low-drift op amp and one instrumentation amplifier. Simple modifications can change the range and accuracy of the voltage-to-current (V-I) converter.

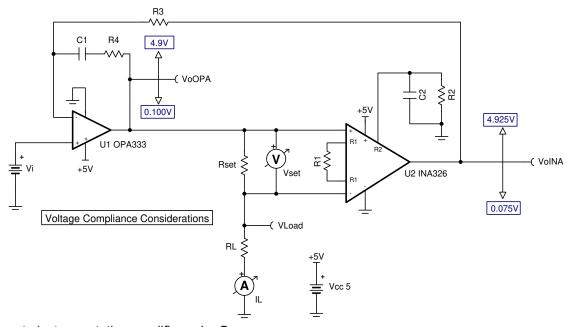


#### **Design Notes**

- Voltage compliance is dominated by op amp linear output swing (see data sheet A<sub>OL</sub> test conditions) and instrumentation amplifier linear output swing. See the *Analog engineer's calculator* for more information.
- 2. Voltage compliance, along with  $R_{LMin}$ ,  $R_{LMax}$ , and  $R_{set}$  bound the  $I_L$  range.
- 3. Check op amp and instrumentation amplifier input common-mode voltage range.
- 4. Stability analysis must be done to choose R<sub>4</sub> and C<sub>1</sub> for stable operation.
- 5. Loop stability analysis to select R<sub>4</sub> and C<sub>1</sub> are different for each design. The compensation shown is only valid for the resistive load ranges used in this design. Other types of loads, op amps, or instrumentation amplifiers, or both will require different compensation. See the **Design References** section for more op amp stability resources.



## **Design Steps**


1. Select  $R_{\text{set}}$  and check  $I_{\text{LMin}}$  based on voltage compliance.

$$I_{LMax} = \frac{V_{oOPAMax}}{R_{set} + R_{LMax}}$$

$$10\mu A = \frac{4.9V}{R_{\text{set}} + 390k\Omega} \rightarrow R_{\text{set}} = 100k\Omega$$

$$I_{LMin} = \frac{V_{oOPAMin}}{R_{set} + R_{LMin}}$$

$$I_{\text{LMin}} = \frac{0.1 \text{V}}{100 \text{k}\Omega + 0\Omega} = 1 \mu \text{A}$$



2. Compute instrumentation amplifier gain, G.

$$V_{setMin} = I_{LMin} \times R_{set} = 1\mu A \times 100 k\Omega = 0.1V$$

$$V_{setMax} = I_{LMax} \times R_{set} = 10 \mu A \times 100 k\Omega = 1 V$$

$$G = \frac{v_{iMax} - v_{iMin}}{v_{setMax} - v_{setMin}}$$

$$G = \frac{4.9V - 0.49V}{1V - 0.1V} = 4.9$$

3. Choose  $R_1$  for INA326 instrumentation amplifier gain, G. Use data sheet recommended  $R_2$  = 200k $\Omega$  and  $C_2$  = 510pF.

$$G = 2 \times \left(\frac{R_2}{R_1}\right)$$

$$R_1 = \frac{2 \times R_2}{G}$$

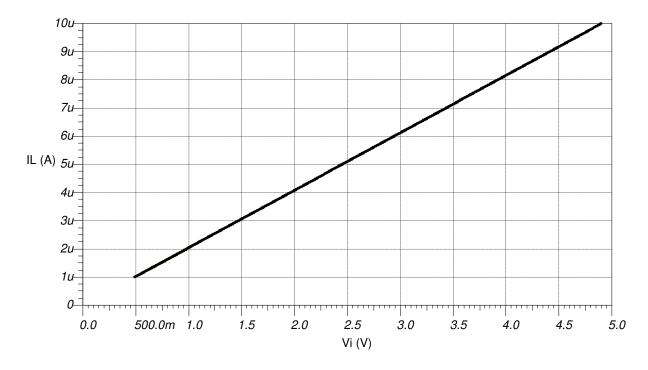
$$R_1 = \left(\frac{2 \times 200 \text{k}\Omega}{4.9}\right) = 81.6327 \text{k}\Omega \approx 81.6 \text{k}\Omega$$



## 4. The final transfer function of the circuit follows:

$$I_L = \frac{V_i}{G \times R_{set}}$$

$$I_L = \frac{V_i}{4.9 \times 100 \mathrm{k}\Omega} = \frac{V_i}{490 \mathrm{k}\Omega}$$


$$V_i = 0.49V \rightarrow I_L = 1\mu A$$

$$V_i = 4.9V \rightarrow I_L = 10 \mu A$$

## **Design Simulations**

#### **DC Simulation Results**

| Vi    | R <sub>L</sub> | IL         | V <sub>oOPA</sub> | V <sub>oOPA</sub><br>Compliance | V <sub>oINA</sub> | V <sub>olNA</sub><br>Compliance |
|-------|----------------|------------|-------------------|---------------------------------|-------------------|---------------------------------|
| 0.49V | Ω0             | 0.999627µA | 99.982723mV       | 100mV to 4.9V                   | 490.013346mV      | 75mV to 4.925V                  |
| 0.49V | 390kΩ          | 0.999627µA | 489.837228mV      | 100mV to 4.9V                   | 490.013233mV      | 75mV to 4.925V                  |
| 4.9V  | 0Ω             | 9.996034µA | 999.623352mV      | 100mV to 4.9V                   | 4.900016V         | 75mV to 4.925V                  |
| 4.9V  | 390kΩ          | 9.996031µA | 4.898075V         | 100mV to 4.9V                   | 4.900015V         | 75mV to 4.925V                  |



### **Design References**

Texas Instruments, SBOMAT8 TINA-TI™ circuit simulation, file download

Texas Instruments, Low-Level V-to-I Converter Reference Design, 0V to 5V Input and 0μA to 5μA Output, product page

Texas Instruments, Solving Op Amp Stability Issues, E2E<sup>TM</sup> amplifiers forum

Trademarks Superior Instruments

Www.ti.com

# **Design Featured Op Amp**

| OPA333            |              |  |  |
|-------------------|--------------|--|--|
| V <sub>ss</sub>   | 1.8V to 5.5V |  |  |
| V <sub>inCM</sub> | Rail-to-rail |  |  |
| V <sub>out</sub>  | Rail-to-rail |  |  |
| V <sub>os</sub>   | 2µV          |  |  |
| Iq                | 17μA/Ch      |  |  |
| I <sub>b</sub>    | 70pA         |  |  |
| UGBW              | 350kHz       |  |  |
| SR                | 0.16V/µs     |  |  |
| #Channels         | 1 and 2      |  |  |
| OPA333            |              |  |  |

## **Design Featured Instrumentation Amplifier**

| itation / unpinion |                                |  |  |  |
|--------------------|--------------------------------|--|--|--|
| INA326             |                                |  |  |  |
| V <sub>ss</sub>    | 2.7V to 5.5V                   |  |  |  |
| V <sub>inCM</sub>  | Rail-to-rail                   |  |  |  |
| $V_{out}$          | Rail-to-rail                   |  |  |  |
| V <sub>os</sub>    | 20μV                           |  |  |  |
| Iq                 | 2.4mA                          |  |  |  |
| l <sub>b</sub>     | 0.2nA                          |  |  |  |
| UGBW               | 1kHz (set by 1kHz filter)      |  |  |  |
| SR                 | 0.012V/µs (set by 1kHz filter) |  |  |  |
| #Channels          | 1                              |  |  |  |
| INA326             |                                |  |  |  |

# **Trademarks**

All trademarks are the property of their respective owners.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated