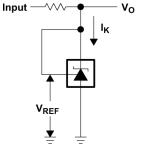


Technical documentation

Support & training

TLV431, TLV431A, TLV431B SLVS139Z - JULY 1996 - REVISED JUNE 2024


TLV431x Low-Voltage Adjustable Precision Shunt Regulator

1 Features

- Low-voltage operation, V_{REF} = 1.24V
- Adjustable output voltage, $V_0 = V_{RFF}$ to 6V
- Reference voltage tolerances at 25°C
 - 0.5% for TLV431B
 - 1% for TLV431A
 - 1.5% for TLV431
- Typical temperature drift
 - 4mV (0°C to 70°C)
 - 6mV (-40°C to 85°C)
 - 11mV (–40°C to 125°C)
- Low operational cathode current, 80µA typical
- 0.25Ω typical output impedance
- Ultra-small SC-70 package offers 40% smaller • footprint than SOT-23-3
- See TLVH431 and TLVH432 for:
 - Wider V_{KA} (1.24V to 18 V) and I_K (80mA)
 - Additional SOT-89 package
 - Multiple pinouts for SOT-23-3 and SOT-89 packages
- On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. on all other products, production processing does not necessarily include testing of all parameters.

2 Applications

- Adjustable voltage and current referencing
- Secondary side regulation in flyback SMPSs
- Zener replacement ٠
- Voltage monitoring
- Comparator with integrated reference

Simplified Schematic

3 Description

The TLV431 device is a low-voltage 3-terminal adjustable voltage reference with specified thermal stability over applicable industrial and commercial temperature ranges. Output voltage can be set to any value between V_{REF} (1.24V) and 6V with two external resistors (see the Parameter Measurement Information section). These devices operate from a lower voltage (1.24V) than the widely used TL431 and TL1431 shunt-regulator references.

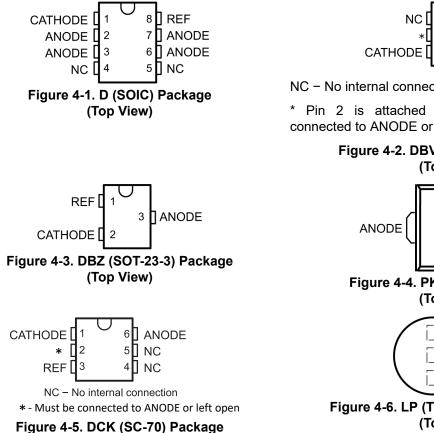
When used with an optocoupler, the TLV431 device is an ideal voltage reference in isolated feedback circuits for 3V to 3.3V switching-mode power supplies. These devices have a typical output impedance of 0.25Ω . Active output circuitry provides a very sharp turnon characteristic, making them excellent replacements for low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies.

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
	DBZ (SOT-23, 3)	2.92mm × 2.37mm
TLV431	DBV (SOT-23, 5)	2.90mm × 2.8mm
120431	LP (TO-92, 3)	5.2mm × 3.68mm
	PK (SOT-89, 3)	4.5mm × 4.095mm
	DBV (SOT-23, 5)	2.90mm × 2.8mm
	DBZ (SOT-23, 3)	2.92mm × 2.37mm
TLV431A	PK (SOT-89, 3)	4.5mm × 4.095mm
	LP (TO-92, 3)	5.2mm × 3.68mm
	D (SOIC, 8)	4.9mm × 6mm
	DBV (SOT-23, 5)	2.90mm × 2.8mm
	DBZ (SOT-23, 3)	2.92mm × 2.37mm
TLV431B	PK (SOT-89, 3)	4.5mm × 4.095mm
	LP (TO-92, 3)	5.2mm × 3.68mm
	DCK (SOT-SC70, 6)	2mm × 1.5mm

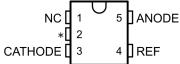
Package Information

(1)For all available packages, see the orderable addendum at the end of the data sheet.

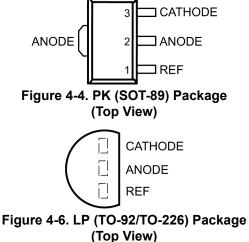
The package size (length × width) is a nominal value and (2)includes pins, where applicable


Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Pin Configuration and Functions	
5 Specifications	4
5.1 Absolute Maximum Ratings	4
5.2 ESD Ratings	4
5.3 Recommended Operating Conditions	4
5.4 Thermal Information	4
5.5 Electrical Characteristics for TLV431	<mark>5</mark>
5.6 Electrical Characteristics for TLV431A	<mark>6</mark>
5.7 Electrical Characteristics for TLV431B	7
5.8 Typical Characteristics	<mark>8</mark>
6 Parameter Measurement Information	17
7 Detailed Description	18
7.1 Overview	
7.2 Functional Block Diagram	


7.3 Feature Description	18
7.4 Device Functional Modes	
8 Applications and Implementation	20
8.1 Application Information	20
8.2 Typical Applications	. 21
8.3 Power Supply Recommendations	24
8.4 Layout	24
9 Device and Documentation Support	25
9.1 Documentation Support	25
9.2 Receiving Notification of Documentation Updates	25
9.3 Support Resources	. 25
9.4 Trademarks	25
9.5 Electrostatic Discharge Caution	25
9.6 Glossary	25
10 Revision History	. 25
11 Mechanical, Packaging, and Orderable	
Information	26

4 Pin Configuration and Functions


(Top View)

NC - No internal connection

* Pin 2 is attached to Substrate and must be connected to ANODE or left open.

			TYPE	DESCRIPTION				
NAME	DBZ	DBV	РК	D	LP	DCK		DESCRIPTION
CATHODE	2	3	3	1	1	1	I/O	Shunt Current/Voltage input
REF	1	4	1	8	3	3	I	Threshold relative to common anode
ANODE	3	5	2	2, 3, 6, 7	2	6	Ο	Common pin, normally connected to ground
NC	_	1	—	4, 5	_	4, 5	I	No Internal Connection
*	_	2	_			2	I	Substrate Connection. Must be connected to ANODE or left open.

Table 4-1. Pin Functions

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{KA}	Cathode voltage ⁽²⁾		7	V
Ι _K	Continuous cathode current	-20	20	mA
I _{ref}	Reference current	-0.05	3	mA
	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Voltage values are with respect to the anode terminal, unless otherwise noted.

5.2 ESD Ratings

PARAMETER		DEFINITION	VALUE	UNIT
V(ESD)		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{KA} Cathode voltage			V _{REF}	6	V
Ι _K	Cathode current	0.1	15	mA	
		TLV431_C	0	70	
T _A	Operating free-air temperature	TLV431_I	-40	85	°C
		TLV431_Q	-40	125	

5.4 Thermal Information

	TLV431x							
	THERMAL METRIC ⁽¹⁾	DCK	D	PK	DBV	DBZ	LP	UNIT
		6 PINS	8 PINS	3 PINS	5 PINS	3 PINS	3 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	87	97	52	206	206	140	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	259	39	9	131	76	55	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report (SPRA953).

5.5 Electrical Characteristics for TLV431

at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			TLV431			UNIT
			TEST CONDITIONS			TYP	MAX	ONIT
			T _A = 25°C		1.222	1.24	1.258	
V	Reference voltage	V _{KA} = V _{REF} ,	- (1)	TLV431C	1.21		1.27	V
V _{REF}	Relefence voltage	I _K =10mA	T _A = full range ⁽¹⁾ (see Figure 6-1)	TLV431I	1.202		1.278	v
			(0001.gu 001)	TLV431Q	1.194		1.286	
			(1) (TLV431C		4	12	
V _{REF(dev)}	V _{REF} deviation over full temperature range ⁽²⁾	V _{KA} = V _{REF} , I _K = Figure 6-1)	= 10mA ^(*) (see	TLV431I		6	20	mV
	comportatio rango		TLV431Q			11	31	
$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	Ratio of V _{REF} change in cathode voltage change	$V_{KA} = V_{REF}$ to 6V, $I_K = 10$ mA (see Figure 6-2)				-1.5	-2.7	mV/V
I _{ref}	Reference terminal current	I _K = 10mA, R1	= 10kΩ, R2 = open	(see Figure 6-2)		0.15	0.5	μA
				TLV431C		0.05	0.3	
I _{ref(dev)}	l _{ref} deviation over full temperature range ⁽²⁾	I_{K} = 10mA, R1 =10kΩ, R2 = open ⁽¹⁾ (see Figure 6-2)		TLV431I		0.1	0.4	μA
			TLV431Q			0.15	0.5	
	Minimum cathode current for			TLV431C/I		55	80	
I _{K(min)}	regulation	V _{KA} = V _{REF} (see Figure 6-1)		TLV431Q		55	100	μA
I _{K(off)}	Off-state cathode current	$V_{REF} = 0$, $V_{KA} = 6V$ (see Figure 6-3)			0.001	0.1	μA	
z _{ka}	Dynamic impedance ⁽³⁾	V _{KA} = V _{REF} , f ≤ Figure 6-1)	1kHz, I _K = 0.1mA t	o 15mA (see		0.25	0.4	Ω

(1) Full temperature ranges are -40°C to 125°C for TLV431Q, -40°C to 85°C for TLV431I, and 0°C to 70°C for TLV431C.

(1) The deviation parameters V_{REF(dev)} and I_{ref(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as:

$$\left|\alpha V_{\mathsf{REF}}\right| \left(\frac{\mathsf{ppm}}{^{\circ}\mathsf{C}}\right) = \frac{\left(\frac{V_{\mathsf{REF}}(\mathsf{dev})}{V_{\mathsf{REF}}\left(\mathsf{T}_{\mathsf{A}} = 25^{\circ}\mathsf{C}\right)}\right) \times 10^{6}}{\Delta\mathsf{T}_{\mathsf{A}}}$$

where ΔT_A is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature.

$$|z_{ka}| = \frac{\Delta V_{KA}}{\Delta V_{KA}}$$

The dynamic impedance is defined as ΔI_{κ} . When the device is operating with two external resistors (see Figure 6-2), the

$$as: \left|z_{ka}\right|' = \frac{\Delta V}{\Delta I} \approx \left|z_{ka}\right| \times \left(1 + \frac{R1}{R2}\right)$$

total dynamic impedance of the circuit is defined as:

(3)

5.6 Electrical Characteristics for TLV431A

at 25°C free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS			TLV431A		
						TYP	MAX	UNIT
			T _A = 25°C		1.228	1.24	1.252	
N N	Reference voltage	V _{KA} = V _{REF} ,	(1)	TLV431AC	1.221		1.259	V
V _{REF}	Nelelelice voltage	I _K = 10mA	$T_A = $ full range ⁽¹⁾ (see Figure 6-1)	TLV431AI	1.215		1.265	v
				TLV431AQ	1.209		1.271	
			(1) .	TLV431AC		4	12	
V _{REF(dev)}	V _{REF} deviation over full temperature range ⁽²⁾	V _{KA} = V _{REF} , Figure 6-1)	I _K = 10mA ⁽¹⁾ (see	TLV431AI		6	20	mV
		ligaro o l')				11	31	
$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	Ratio of V _{REF} change in cathode voltage change	V _{KA} = V _{REF} t	$V_{KA} = V_{REF}$ to 6V, $I_K = 10$ mA (see Figure 6-2)			-1.5	-2.7	mV/V
I _{ref}	Reference terminal current	I _K = 10mA, F	R1 = 10kΩ, R2 = op	en (see Figure 6-2)		0.15	0.5	μA
				TLV431AC		0.05	0.3	
I _{ref(dev)}	I _{ref} deviation over full temperature range ⁽²⁾		$I_{K} = 10mA, R1 = 10k\Omega, R2 = open^{(1)}$ (see Figure 6-2)			0.1	0.4	μA
	temperature runge			TLV431AQ		0.15	0.5	
	Minimum cathode current for			TLV431AC/AI		55	80	۵
I _{K(min)}	regulation	V _{KA} = V _{REF} (see Figure 6-1)		TLV431AQ		55	100	μA
I _{K(off)}	Off-state cathode current	V _{REF} = 0, V _K	$V_{REF} = 0$, $V_{KA} = 6V$ (see Figure 6-3)			0.001	0.1	μA
z _{KA}	Dynamic impedance ⁽³⁾	V _{KA} = V _{REF} , Figure 6-1)	f ≤ 1kHz, I _K = 0.1m/	A to 15mA (see		0.25	0.4	Ω

(1) Full temperature ranges are -40°C to 125°C for TLV431Q, -40°C to 85°C for TLV431I, and 0°C to 70°C for TLV431C.

(2) The deviation parameters V_{REF(dev)} and I_{ref(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as:

$$\alpha V_{\mathsf{REF}} \left| \left(\frac{\mathsf{ppm}}{^{\circ}\mathsf{C}} \right) = \frac{\left(\frac{\mathsf{V}_{\mathsf{REF}}(\mathsf{dev})}{\mathsf{V}_{\mathsf{REF}}\left(\mathsf{T}_{\mathsf{A}} = 25^{\circ}\mathsf{C}\right)} \right) \times 10^{6}}{\Delta\mathsf{T}_{\mathsf{A}}}$$

where ΔT_A is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature.

$$|z_{ka}| = \frac{\Delta V_{KA}}{M}$$

The dynamic impedance is defined as $\Delta I_{\rm K}$. When the device is operating with two external resistors (see Figure 6-2), the

total dynamic impedance of the circuit is defined as: $|z_{ka}|' = \frac{\Delta V}{\Delta I} \approx |z_{ka}| \times \left(1 + \frac{R1}{R2}\right)$

(3)

5.7 Electrical Characteristics for TLV431B

at 25°C free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIO	TLV431B			UNIT	
			TEST CONDITIONS			TYP	MAX	UNIT
			T _A = 25°C		1.234	1.24	1.246	
V	Reference voltage	V _{KA} = V _{REF} ,	(1)	TLV431BC	1.227		1.253	V
V _{REF}	Nelerence voltage	I _K =10mA	T _A = full range ⁽¹⁾ (see Figure 6-1)	TLV431BI	1.224		1.259	v
			(0001.guio 0 1)	TLV431BQ	1.221		1.265	
		., .,		TLV431BC		4	12	
V _{REF(dev)}	V _{REF} deviation over full temperature range ⁽²⁾	V _{KA} = V _{REF} , Figure 6-1)	I _K = 10mA ⁽¹⁾ (see	TLV431BI		6	20	mV
			- iguio o i)			11	31	
$\frac{\Delta V_{\text{REF}}}{\Delta V_{\text{KA}}}$	Ratio of V _{REF} change in cathode voltage change	$V_{KA} = V_{REF}$ to 6V, $I_K = 10$ mA (see Figure 6-2)				-1.5	-2.7	mV/V
I _{ref}	Reference terminal current	I _K = 10mA, R	1 = 10kΩ, R2 = ope	n (see Figure 6-2)		0.1	0.5	μA
				TLV431BC		0.05	0.3	
I _{ref(dev)}	l _{ref} deviation over full temperature range ⁽²⁾	open [®] (see Figure 6-2)		TLV431BI		0.1	0.4	μA
	tomporataro rango			TLV431BQ		0.15	0.5	
I _{K(min)}	Minimum cathode current for regulation	V _{KA} = V _{REF} (s	V _{KA} = V _{REF} (see Figure 6-1)			55	100	μA
I _{K(off)}	Off-state cathode current	V_{REF} = 0, V_{KA} = 6V (see Figure 6-3)				0.001	0.1	μA
z _{ka}	Dynamic impedance ⁽⁴⁾	V _{KA} = V _{REF} , f Figure 6-1)	≤ 1kHz, I _K = 0.1mA	to 15mA (see		0.25	0.4	Ω

(1) Full temperature ranges are -40°C to 125°C for TLV431Q, -40°C to 85°C for TLV431I, and 0°C to 70°C for TLV431C.

(2) The deviation parameters VREF(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as:

$$\alpha V_{\mathsf{REF}} \left| \left(\frac{\mathsf{ppm}}{^{\circ}\mathsf{C}} \right) = \frac{\left(\frac{V_{\mathsf{REF}(\mathsf{dev})}}{V_{\mathsf{REF}} \left(\mathsf{T}_{\mathsf{A}} = 25^{\circ}\mathsf{C} \right)} \right) \times 10^{6}}{\Delta \mathsf{T}_{\mathsf{A}}}$$

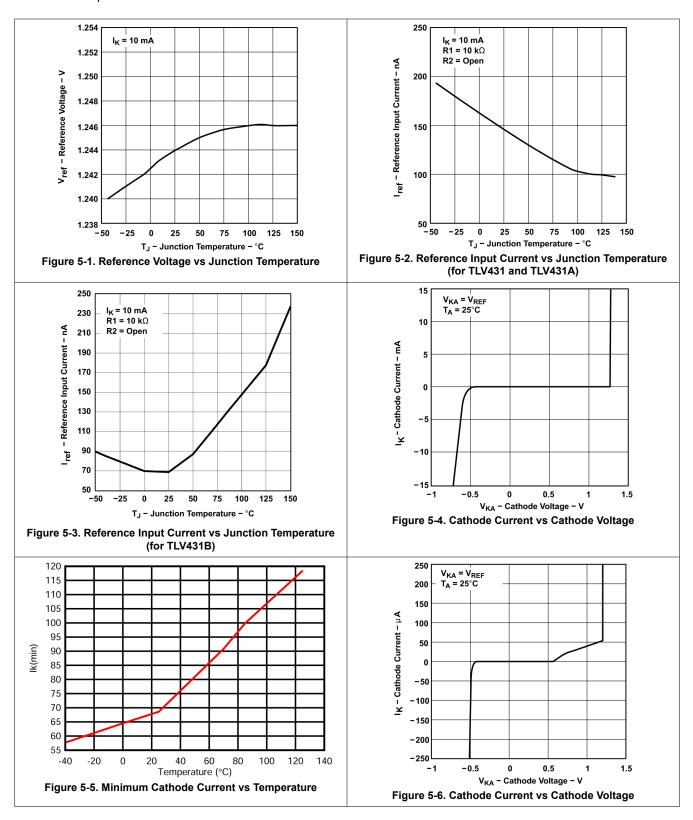
where ΔT_A is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature.

Full temperature ranges are -40°C to 125°C for TLV431Q, -40°C to 85°C for TLV431I, and 0°C to 70°C for TLV431C.

$$|z_{ka}| = \frac{\Delta V_{KA}}{1}$$

(4) dynamic impedance is defined as

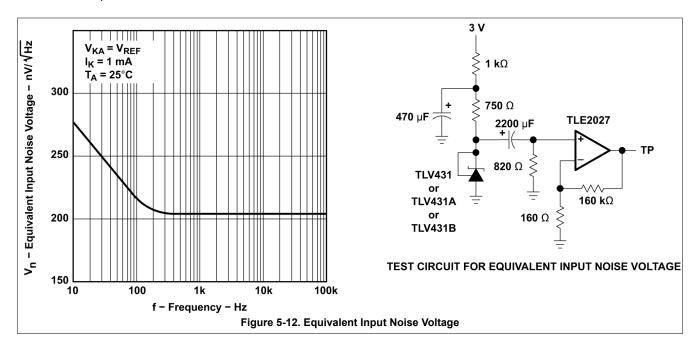
(3)


 ΔI_{K} . When the device is operating with two external resistors (see Figure 6-2), the total

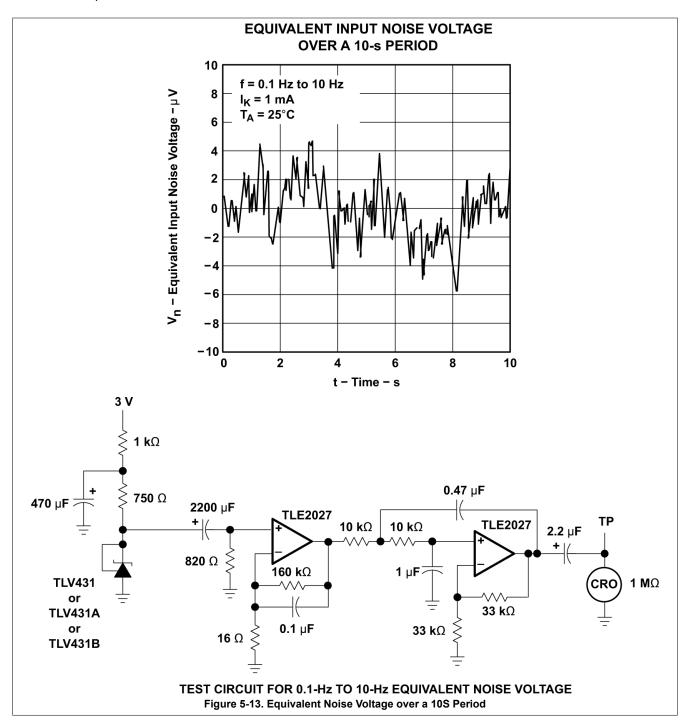
dynamic impedance of the circuit is defined as: $|z_{ka}|' = \frac{\Delta V}{\Delta I} \approx |z_{ka}| \times \left(1 + \frac{R1}{R2}\right)$

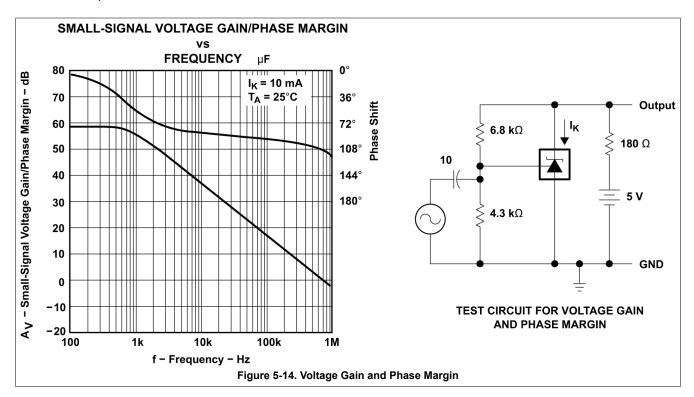

5.8 Typical Characteristics

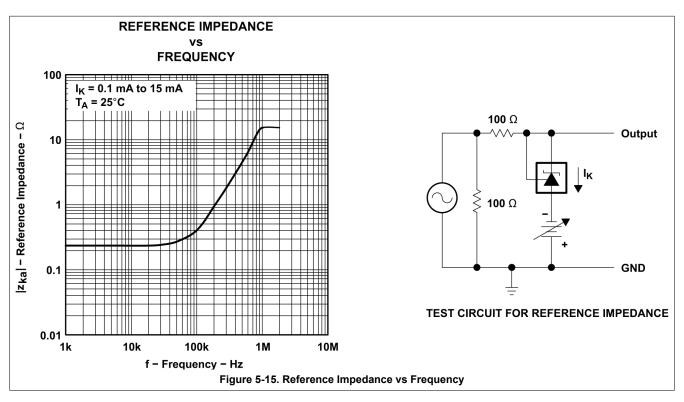
Operation of the device at these or any other conditions beyond those indicated in the *Recommended Operating Conditions* table are not implied.

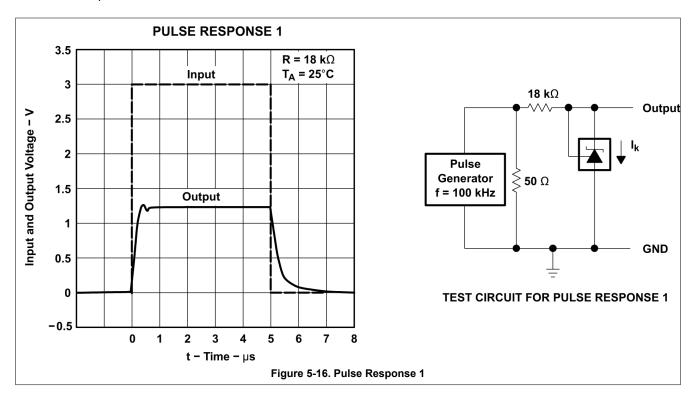


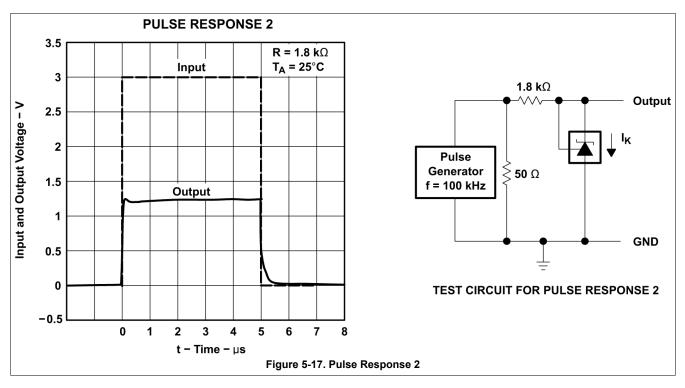
Copyright © 2024 Texas Instruments Incorporated

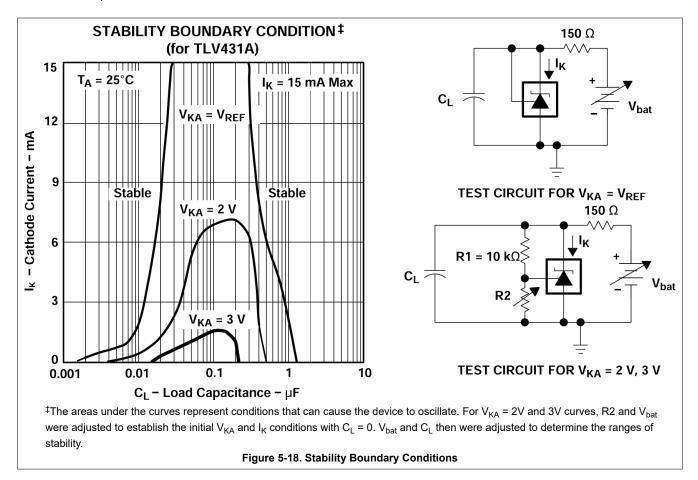


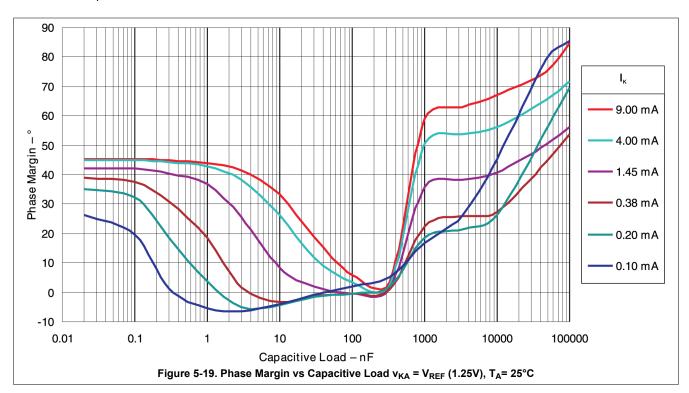


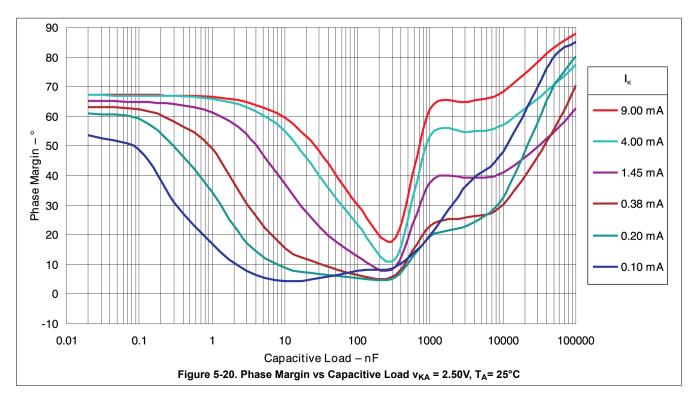


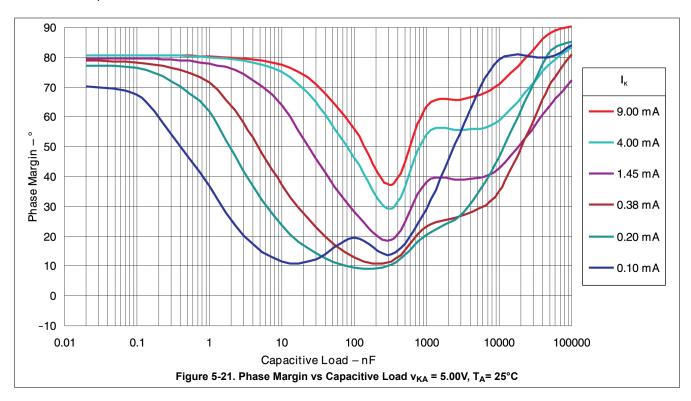











Operation of the device at these or any other conditions beyond those indicated in the *Recommended Operating Conditions* table are not implied.

Copyright © 2024 Texas Instruments Incorporated

6 Parameter Measurement Information

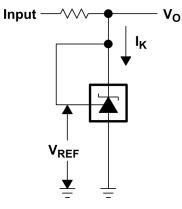


Figure 6-1. Test Circuit for $v_{KA} = V_{REF}$, $V_O = V_{KA} = V_{REF}$

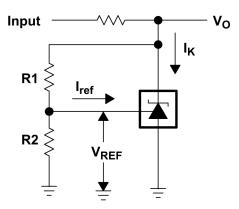


Figure 6-2. Test Circuit for $v_{KA} > V_{REF}$, $V_O = V_{KA} = V_{REF} \times (1 + R1/R2) + I_{ref} \times R1$

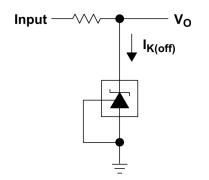
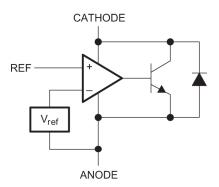


Figure 6-3. Test Circuit for I_{K(off)}

7 Detailed Description

7.1 Overview


TLV431 is a low power counterpart to TL431, having lower reference voltage (1.24V vs 2.5 V) for lower voltage adjustability and lower minimum cathode current ($I_{k(min)}$ = 100µA vs 1mA). Like TL431, TLV431 is used in conjunction with it's key components to behave as a single voltage reference, error amplifier, voltage clamp, or comparator with integrated reference.

TLV431 can be operated and adjusted to cathode voltages from 1.24V to 6V, making this part optimum for a wide range of end equipments in industrial, auto, telecom, and computing. For this device to behave as a shunt regulator or error amplifier, > $100\mu A$ ($I_{min}(max)$) must be supplied in to the cathode pin. Under this condition, feedback can be applied from the Cathode and Ref pins to create a replica of the internal reference voltage.

Various reference voltage options can be purchased with initial tolerances (at 25°C) of 0.5%, 1%, and 1.5%. These reference options are denoted by B (0.5%), A (1.0%), and blank (1.5%) after the TLV431.

The TLV431xC devices are characterized for operation from 0° C to 70° C, the TLV431xI devices are characterized for operation from -40° C to 85° C, and the TLV431xQ devices are characterized for operation from -40° C to 125° C.

7.2 Functional Block Diagram

7.3 Feature Description

TLV431 consists of an internal reference and amplifier that outputs a sink current base on the difference between the reference pin and the virtual internal pin. The sink current is produced by an internal darlington pair.

When operated with enough voltage headroom (\geq 1.24V) and cathode current (Ika), TLV431 forces the reference pin to 1.24V. However, the reference pin can not be left floating, as it requires $I_{ref} \geq 0.5\mu A$ (see the *Functional Block Diagram*). This is because the reference pin is driven into an NPN, which requires a base current to operate properly.

When feedback is applied from the Cathode and Reference pins, TLV431 behaves as a Zener diode, regulating to a constant voltage dependent on current being supplied into the cathode. This is due to the internal amplifier and reference entering the proper operating regions. The same amount of current required in the above feedback situation must be applied to this device in open-loop, servo, or error-amplifying implementations for it to be in the proper linear region giving TLV431 enough gain.

Unlike many linear regulators, TLV431 is internally compensated to be stable without an output capacitor between the cathode and anode. However, if it is desired to use an output capacitor Figure 5-19 can be used as a guide to assist in choosing the correct capacitor to maintain stability.

7.4 Device Functional Modes

7.4.1 Open Loop (Comparator)

When the cathode/output voltage or current of TLV431 is not being fed back to the reference/input pin in any form, this device is operating in open loop. With proper cathode current (Ika) applied to this device, TLV431 will have the characteristics shown in Figure 5-6. With such high gain in this configuration, TLV431 is typically used as a comparator. With the reference integrated makes TLV431 the preferred choice when users are trying to monitor a certain level of a single signal.

7.4.2 Closed Loop

When the cathode/output voltage or current of TLV431 is being fed back to the reference/input pin in any form, this device is operating in closed loop. The majority of applications involving TLV431 use it in this manner to regulate a fixed voltage or current. The feedback enables this device to behave as an error amplifier, computing a portion of the output voltage and adjusting it to maintain the desired regulation. This is done by relating the output voltage back to the reference pin in a manner to make it equal to the internal reference voltage, which can be accomplished through resistive or direct feedback.

8 Applications and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

Figure 8-1 shows the TLV431, TLV431A, or TLV431B used in a 3.3V isolated flyback supply. Output voltage V_O can be as low as reference voltage V_{REF} (1.24V ± 1%). The output of the regulator, plus the forward voltage drop of the optocoupler LED (1.24 + 1.4 = 2.64V), determine the minimum voltage that can be regulated in an isolated supply configuration. Regulated voltage as low as 2.7 Vdc is possible in the topology shown in Figure 8-1.

The 431 family of devices are prevalent in these applications, being designers go to choice for secondary side regulation. Due to this prevalence, this section will further go on to explain operation and design in both states of TLV431 that this application will see, open loop (Comparator + Vref) and closed loop (Shunt Regulator).

Further information about system stability and using a TLV431 device for compensation can be found in the application note *Compensation Design With TL431 for UCC28600* (SLUA671).

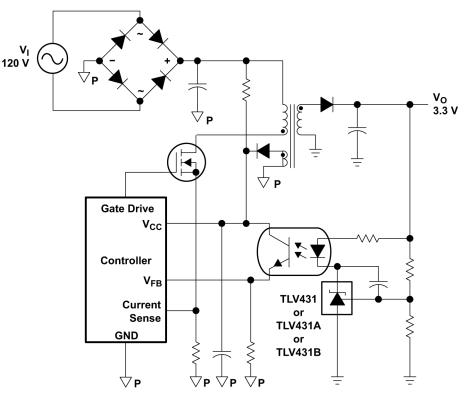


Figure 8-1. Flyback with Isolation Using TLV431, TLV431A, or TLV431B as Voltage Reference and Error Amplifier

8.2 Typical Applications

8.2.1 Comparator with Integrated Reference (Open Loop)

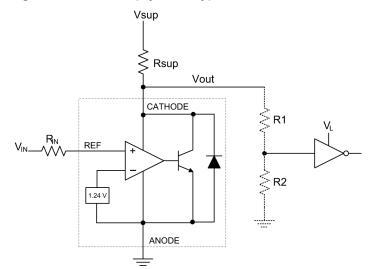


Figure 8-2. Comparator Application Schematic

8.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 8-1 as the input parameters.

Table 8-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	0V to 5V
Input Resistance	10kΩ
Supply Voltage	5V
Cathode Current (lk)	500µA
Output Voltage Level	~1V - Vsup
Logic Input Thresholds VIH/VIL	VL

8.2.1.2 Detailed Design Procedure

When using TLV431 as a comparator with reference, determine the following:

- Input voltage range
- Reference voltage accuracy
- Output logic input high and low level thresholds
- Current source resistance

8.2.1.2.1 Basic Operation

In the configuration shown in Figure 8-2 TLV431 will behave as a comparator, comparing the V_{ref} pin voltage to the internal virtual reference voltage. When provided a proper cathode current (I_k), TLV431 will have enough open-loop gain to provide a quick response. With the TLV431's maximum operating current ($I_{min}(max)$) being 100µA and up to 150µA over temperature, operation below that could result in low gain, leading to a slow response.

8.2.1.2.2 Overdrive

Slow or inaccurate responses can also occur when the reference pin is not provided enough overdrive voltage. This is the amount of voltage that is higher than the internal virtual reference. The internal virtual reference voltage will be within the range of $1.24V \pm (0.5\%, 1.0\%, \text{ or } 1.5\%)$ depending on which version is being used.

Copyright © 2024 Texas Instruments Incorporated

The more overdrive voltage provided, the faster the TLV431 will respond. This can be seen in Figure 8-3 and Figure 8-4 where it displays the output responses to various input voltages.

For applications where TLV431 is being used as a comparator, it is best to set the trip point to greater than the positive expected error (that is, +1.0% for the A version). For fast response, setting the trip point to > 10% of the internal V_{ref} should suffice.

For minimal voltage drop or difference from Vin to the ref pin, TI recommends using an input resistor < $10k\Omega$ to provide I_{ref}.

8.2.1.2.3 Output Voltage and Logic Input Level

For the TLV431 to properly be used as a comparator, the logic output must be readable by the receiving logic device. This is accomplished by knowing the input high and low level threshold voltage levels, typically denoted by V_{IH} and V_{II} .

As seen in Figure 8-3, TLV431's output low level voltage in open-loop/comparator mode is approximately 1V, which is sufficient for some 3.3V supplied logic. However, this does not work for 2.5V or 1.8V supplied logic. To accommodate this a resistive divider can be tied to the output to attenuate the output voltage to a voltage legible to the receiving low voltage logic device.

TLV431's output high voltage is approximately V_{sup} due to TLV431 being open-collector. If V_{sup} is much higher than the receiving logic's maximum input voltage tolerance, the output must be attenuated to accommodate the outgoing logic's reliability.

When using a resistive divider on the output, be sure to make the sum of the resistive divider (R1 and R2 in Figure 8-2) is much greater than R_{sup} to not interfere with TLV431's ability to pull close to V_{sup} when turning off.

8.2.1.2.3.1 Input Resistance

TLV431 requires an input resistance in this application to source the reference current (I_{ref}) needed from this device to be in the proper operating regions while turning on. The actual voltage seen at the ref pin will be V_{ref} = Vin - Iref × Rin. Because the Iref can be as high as 0.5µA, TI recommends using a resistance small enough that will mitigate the error that I_{ref} creates from V_{in}.

12 10 Vin~1.24V (+/-5%) 11 9 Vo(Vin=1.18V) 10 Vo(Vin=5.0V) 8 Vo(Vin=1.24V) 9 Vin=5.0V Vo(Vin=1.30V) 7 8 6 7 Voltage (V) Voltage (V) 5 6 5 4 4 3 3 2 2 1 1 0 0 -1 -1 -2 -2 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Time (ms) Time (ms) Figure 8-3. Output Response with Small Overdrive Figure 8-4. Output Response with Large Overdrive Voltages Voltage

8.2.1.3 Application Curves

8.2.2 Shunt Regulator/Reference

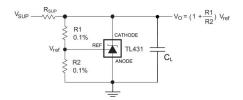


Figure 8-5. Shunt Regulator Schematic

8.2.2.1 Design Requirements

For this design example, use the parameters listed in Table 8-2 as the input parameters.

Table 8-2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Reference Initial Accuracy	1.0%
Supply Voltage	6V
Cathode Current (lk)	1mA
Output Voltage Level	1.24V - 6V
Load Capacitance	100pF
Feedback Resistor Values and Accuracy (R1 and R2)	10kΩ

8.2.2.2 Detailed Design Procedure

When using TLV431 as a Shunt Regulator, determine the following:

- Input voltage range
- Temperature range
- Total accuracy
- Cathode current
- Reference initial accuracy
- Output capacitance

8.2.2.2.1 Programming Output/Cathode Voltage

To program the cathode voltage to a regulated voltage a resistive bridge must be shunted between the cathode and anode pins with the mid point tied to the reference pin. This can be seen in Figure 8-5, with R1 and R2 being the resistive bridge. The cathode/output voltage in the shunt regulator configuration can be approximated by the equation shown in Figure 8-5. The cathode voltage can be more accurately determined by taking the cathode current in to account

$$V_{O} = (1 + R1 / R2) \times V_{ref} - I_{ref} \times R1 (1)$$

For Equation 1 to be valid, TLV431 must be fully biased so that it has enough open-loop gain to mitigate any gain error. This can be done by meeting the I_{min} spec denoted in *Recommended Operating Conditions* table.

8.2.2.2.2 Total Accuracy

When programming the output above unity gain (Vka = Vref), TLV431 is susceptible to other errors that may effect the overall accuracy beyond V_{ref} . These errors include:

- R1 and R2 accuracies
- V_{I(dev)} Change in reference voltage over temperature
- $\Delta \dot{V}_{ref} / \Delta V_{KA}$ Change in reference voltage to the change in cathode voltage
- |z_{KA}| Dynamic impedance, causing a change in cathode voltage with cathode current

Worst-case cathode voltage can be determined taking all of the variables in to account. Application note Setting the Shunt Voltage on an Adjustable Shunt Regulator (SLVA445) assists designers in setting the shunt voltage to achieve optimum accuracy for this device.

8.2.2.2.3 Stability

Though TLV431 is stable with no capacitive load, the device that receives the shunt regulator's output voltage could present a capacitive load that is within the TLV431 region of stability, shown in Figure 5-18. Also, designers may use capacitive loads to improve the transient response or for power supply decoupling.

8.2.2.3 Application Curve

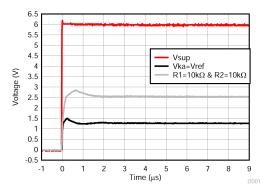
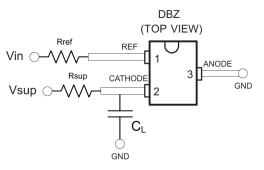


Figure 8-6. TLV431 Start-Up Response

8.3 Power Supply Recommendations

When using TLV431 as a Linear Regulator to supply a load, designers will typically use a bypass capacitor on the output/cathode pin. When doing this, be sure that the capacitance is within the stability criteria shown in Figure 5-18.

To not exceed the maximum cathode current, be sure that the supply voltage is current limited. Also, be sure to limit the current being driven into the Ref pin, as not to exceed the absolute maximum rating.


For applications shunting high currents, pay attention to the cathode and anode trace lengths, adjusting the width of the traces to have the proper current density.

8.4 Layout

8.4.1 Layout Guidelines

Place decoupling capacitors as close to the device as possible. Use appropriate widths for traces when shunting high currents to avoid excessive voltage drops.

8.4.2 Layout Example

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Compensation Design With TL431 for UCC28600 (SLUA671)
- Setting the Shunt Voltage on an Adjustable Shunt Regulator (SLVA445)

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision Y (March 2024) to Revision Z (June 2024)	Page
•	Updated pinout diagrams	3

С	hanges from Revision X (May 2018) to Revision Y (March 2024)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
٠	Moved Simplified Schematic from Description to Applications	1
٠	Updated pinout diagrams	3
•	Updated Typical Applications Design Requiements	

С	hanges from Revision W (March 2018) to Revision X (May 2018)	Page
•	Changed Figure 5-18	8

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLV431ACDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	(YAC6, YACC, YACI, YACN) (YACG, YACL, YACS)	Samples
TLV431ACDBVR1G4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	(YAC6, YACC, YACI) (YACG, YACL, YACS)	Samples
TLV431ACDBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	0 to 70	YACI	
TLV431ACDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	(YAC6, YACC, YACI) (YACG, YACL, YACS)	Samples
TLV431ACDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(YAC6, YAC8, YACB, YACS) (YAC3, YACS, YACU)	Samples
TLV431ACDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	YAC6 YACS	Samples
TLV431ACLP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	0 to 70	V431AC	Samples
TLV431ACLPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	0 to 70	V431AC	Samples
TLV431AID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85	TY431A	
TLV431AIDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(YAI6, YAIC, YAII, YAIN) (YAIG, YAIL, YAIS)	Samples
TLV431AIDBVR1G4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(YAI6, YAIC) (YAIL, YAIS)	Samples
TLV431AIDBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	YAII	
TLV431AIDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(YAI6, YAIC, YAII)	Samples
										(YAIG, YAIL, YAIS)	

PACKAGE OPTION ADDENDUM

29-Dec-2024

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLV431AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(YAI6, YAI8, YAIB, YAIS) (YAI3, YAIS, YAIU)	Samples
TLV431AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	YAI6 YAIS	Samples
TLV431AIDE4	NRND	SOIC	D	8	75	TBD	Call TI	Call TI	-40 to 85		
TLV431AIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY431A	Samples
TLV431AIDRE4	NRND	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 85		
TLV431AILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	V431AI	
TLV431AILPM	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	V431AI	Samples
TLV431AILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	V431AI	Samples
TLV431AQPK	ACTIVE	SOT-89	PK	3	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 125	VA	Samples
TLV431BCDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	(Y3GG, Y3GJ, Y3GU)	Samples
TLV431BCDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	(Y3GG, Y3GJ, Y3GU)	Samples
TLV431BCDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(Y3G3, Y3GS, Y3GU)	Samples
TLV431BCDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(Y3GS, Y3GU)	Samples
TLV431BCDBZTG4	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	Y3GS	Samples
TLV431BCDCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	YEU	Samples
TLV431BCDCKT	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	YEU	Samples
TLV431BCLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	0 to 70	TV431B	
TLV431BCLPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	0 to 70	TV431B	Samples
TLV431BCPK	ACTIVE	SOT-89	PK	3	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	0 to 70	VE	Samples
TLV431BIDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(Y3FJ, Y3FU)	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLV431BIDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(Y3FJ, Y3FU)	Samples
TLV431BIDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(Y3F3, Y3FS, Y3FU)	Samples
TLV431BIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(Y3F3, Y3FS)	Samples
TLV431BIDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(Y3FS, Y3FU)	Samples
TLV431BIDCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YFU	Samples
TLV431BIDCKRG4	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YFU	Samples
TLV431BIDCKT	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YFU	Samples
TLV431BILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	TY431B	
TLV431BILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	TY431B	Samples
TLV431BIPK	ACTIVE	SOT-89	PK	3	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 85	VF	Samples
TLV431BQDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(Y3HJ, Y3HU)	Samples
TLV431BQDBVRE4	ACTIVE	SOT-23	DBV	5	3000	TBD	Call TI	Call TI	-40 to 125		Samples
TLV431BQDBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	Y3HU	Samples
TLV431BQDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(Y3HJ, Y3HU)	Samples
TLV431BQDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(Y3H3, Y3HS, Y3HU)	Samples
TLV431BQDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	Y3HS	Samples
TLV431BQDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(Y3HS, Y3HU)	Samples
TLV431BQDCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	YGU	Samples
TLV431BQDCKT	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	YGU	Samples
TLV431BQLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 125	TQ431B	
TLV431BQLPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 125	TQ431B	Samples

PACKAGE OPTION ADDENDUM

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLV431BQPK	ACTIVE	SOT-89	PK	3	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 125	V6	Samples
TLV431CDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	(Y3C6, Y3Cl) (Y3CG, Y3CS)	Samples
TLV431CDBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	0 to 70	Y3CI	
TLV431CDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	(Y3C6, Y3Cl) (Y3CG, Y3CS)	Samples
TLV431CDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(Y3C6, Y3C8, Y3CB, Y3CS) (Y3C3, Y3CS, Y3CU)	Samples
TLV431CLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	0 to 70	V431C	
TLV431CLPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	0 to 70	V431C	Samples
TLV431IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(Y3I6, Y3II) (Y3IG, Y3IS)	Samples
TLV431IDBVR1G4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y316 Y31S	Samples
TLV431IDBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	Y3II	
TLV431IDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(Y3I6, Y3II) (Y3IG, Y3IS)	Samples
TLV431IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(Y3I6, Y3IB, Y3IS) (Y3IU, Y3IU)	Samples
TLV431IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	Y3I6 Y3IS	Samples
TLV431ILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	V431I	
TLV431ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	V431I	Samples
TLV431QPK	ACTIVE	SOT-89	PK	3	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 125	VB	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

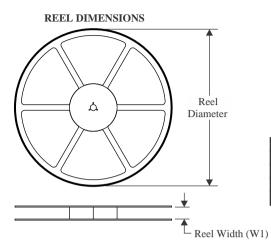
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

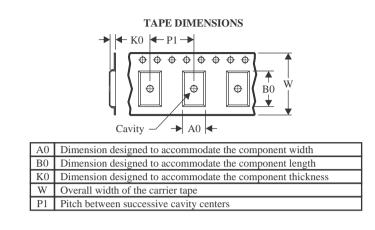
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

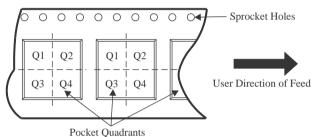
OTHER QUALIFIED VERSIONS OF TLV431A, TLV431B :

• Automotive : TLV431A-Q1, TLV431B-Q1


NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

Texas


STRUMENTS

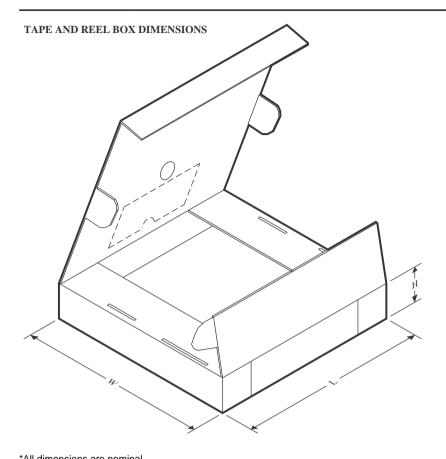
TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal Device	Package	Package	Dine	SPQ	Reel	Reel	A0	В0	К0	P1	w	Pin1
Device	Туре	Drawing		51 62	Diameter		(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
		J			(mm)	W1 (mm)	` '	l` ´	` '	` '	· ,	
TLV431ACDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431ACDBVR1G4	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TLV431ACDBVR1G4	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431ACDBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431ACDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431ACDBZRG4	SOT-23	DBZ	3	3000	180.0	8.4	3.15	2.77	1.22	4.0	8.0	Q3
TLV431AIDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431AIDBVR1G4	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TLV431AIDBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431AIDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431AIDBZRG4	SOT-23	DBZ	3	3000	180.0	8.4	3.15	2.77	1.22	4.0	8.0	Q3
TLV431AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV431AQPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431AQPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431BCDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV431BCDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com


4-Jan-2025

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV431BCDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BCDBZT	SOT-23	DBZ	3	250	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BCDBZTG4	SOT-23	DBZ	3	250	180.0	8.4	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BCDCKR	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BCDCKT	SC70	DCK	6	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BCPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431BCPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431BIDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV431BIDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV431BIDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV431BIDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BIDBZRG4	SOT-23	DBZ	3	3000	180.0	8.4	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BIDBZT	SOT-23	DBZ	3	250	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BIDCKR	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BIDCKRG4	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BIDCKT	SC70	DCK	6	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BIPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431BIPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431BQDBVR	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV431BQDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV431BQDBVRG4	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV431BQDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV431BQDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV431BQDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BQDBZRG4	SOT-23	DBZ	3	3000	180.0	8.4	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BQDBZT	SOT-23	DBZ	3	250	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431BQDCKR	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BQDCKT	SC70	DCK	6	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
TLV431BQPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431BQPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431CDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431CDBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431CDBVT	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TLV431CDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV431IDBVR1G4	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TLV431IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV431IDBZR	SOT-23	DBZ	3	3000	178.0	9.0	3.15	2.77	1.22	4.0	8.0	Q3
TLV431IDBZRG4	SOT-23	DBZ	3	3000	180.0	8.4	3.15	2.77	1.22	4.0	8.0	Q3
TLV431QPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TLV431QPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3

PACKAGE MATERIALS INFORMATION

4-Jan-2025

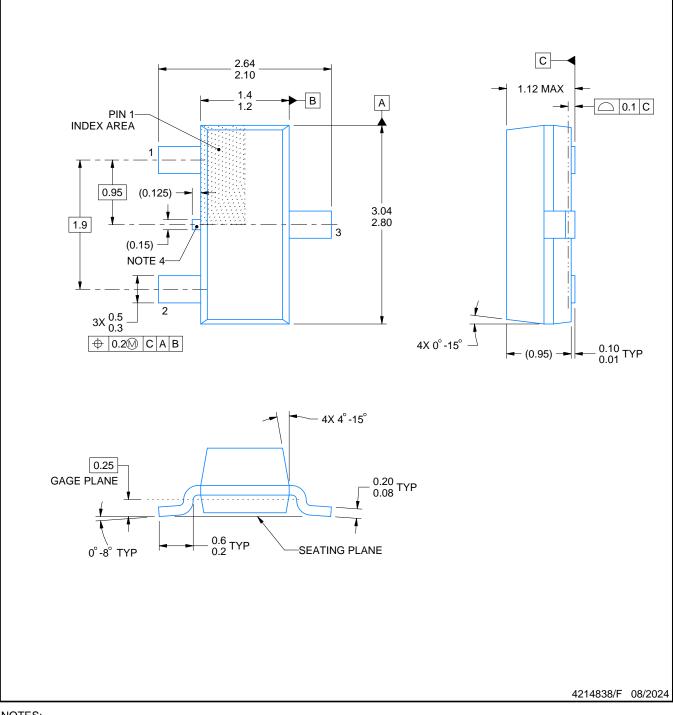
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV431ACDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431ACDBVR1G4	SOT-23	DBV	5	3000	183.0	183.0	20.0
TLV431ACDBVR1G4	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431ACDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431ACDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431ACDBZRG4	SOT-23	DBZ	3	3000	183.0	183.0	20.0
TLV431AIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431AIDBVR1G4	SOT-23	DBV	5	3000	183.0	183.0	20.0
TLV431AIDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431AIDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431AIDBZRG4	SOT-23	DBZ	3	3000	183.0	183.0	20.0
TLV431AIDR	SOIC	D	8	2500	353.0	353.0	32.0
TLV431AQPK	SOT-89	PK	3	1000	340.0	340.0	38.0
TLV431AQPK	SOT-89	PK	3	1000	190.0	190.0	30.0
TLV431BCDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431BCDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431BCDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431BCDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0

PACKAGE MATERIALS INFORMATION

www.ti.com

4-Jan-2025

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV431BCDBZTG4	SOT-23	DBZ	3	250	183.0	183.0	20.0
TLV431BCDCKR	SC70	DCK	6	3000	203.0	203.0	35.0
TLV431BCDCKT	SC70	DCK	6	250	203.0	203.0	35.0
TLV431BCPK	SOT-89	PK	3	1000	340.0	340.0	38.0
TLV431BCPK	SOT-89	PK	3	1000	190.0	190.0	30.0
TLV431BIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431BIDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431BIDBVT	SOT-23	DBV	5	250	203.0	203.0	35.0
TLV431BIDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431BIDBZRG4	SOT-23	DBZ	3	3000	183.0	183.0	20.0
TLV431BIDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
TLV431BIDCKR	SC70	DCK	6	3000	203.0	203.0	35.0
TLV431BIDCKRG4	SC70	DCK	6	3000	203.0	203.0	35.0
TLV431BIDCKT	SC70	DCK	6	250	203.0	203.0	35.0
TLV431BIPK	SOT-89	PK	3	1000	340.0	340.0	38.0
TLV431BIPK	SOT-89	PK	3	1000	190.0	190.0	30.0
TLV431BQDBVR	SOT-23	DBV	5	3000	200.0	183.0	25.0
TLV431BQDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431BQDBVRG4	SOT-23	DBV	5	3000	200.0	183.0	25.0
TLV431BQDBVT	SOT-23	DBV	5	250	203.0	203.0	35.0
TLV431BQDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431BQDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431BQDBZRG4	SOT-23	DBZ	3	3000	183.0	183.0	20.0
TLV431BQDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
TLV431BQDCKR	SC70	DCK	6	3000	200.0	183.0	25.0
TLV431BQDCKT	SC70	DCK	6	250	200.0	183.0	25.0
TLV431BQPK	SOT-89	PK	3	1000	190.0	190.0	30.0
TLV431BQPK	SOT-89	PK	3	1000	340.0	340.0	38.0
TLV431CDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431CDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431CDBVT	SOT-23	DBV	5	250	183.0	183.0	20.0
TLV431CDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV431IDBVR1G4	SOT-23	DBV	5	3000	183.0	183.0	20.0
TLV431IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV431IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
TLV431IDBZRG4	SOT-23	DBZ	3	3000	183.0	183.0	20.0
TLV431QPK	SOT-89	PK	3	1000	190.0	190.0	30.0
TLV431QPK	SOT-89	РК	3	1000	340.0	340.0	38.0


DBZ0003A

PACKAGE OUTLINE

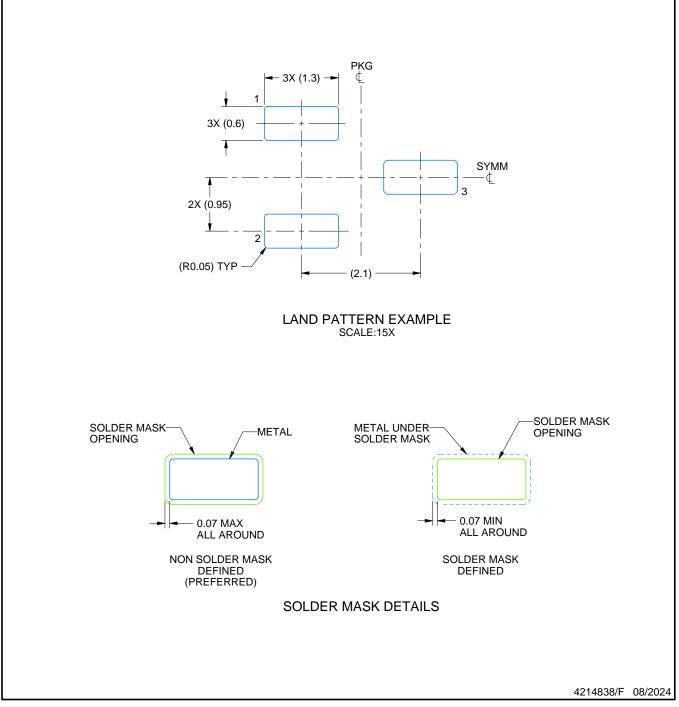
SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

- 4. Support pin may differ or may not be present.
- 5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side



DBZ0003A

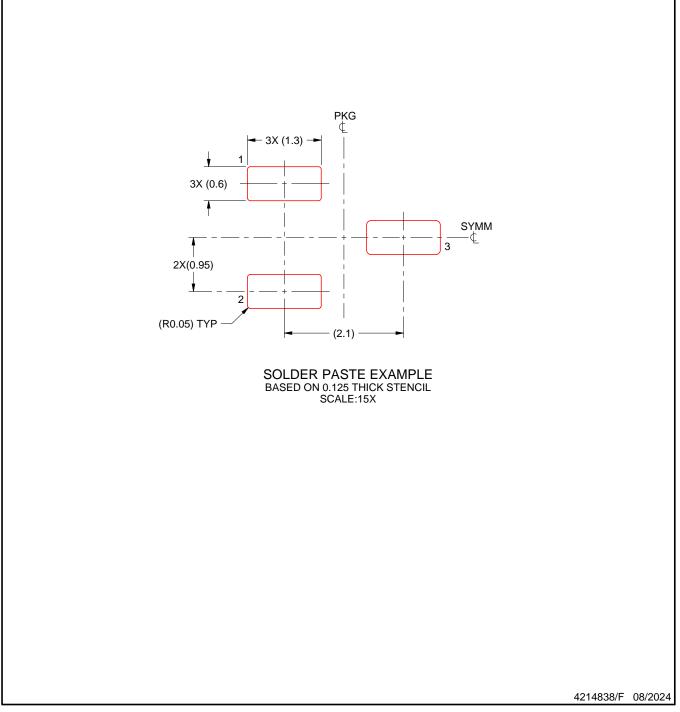
EXAMPLE BOARD LAYOUT

SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

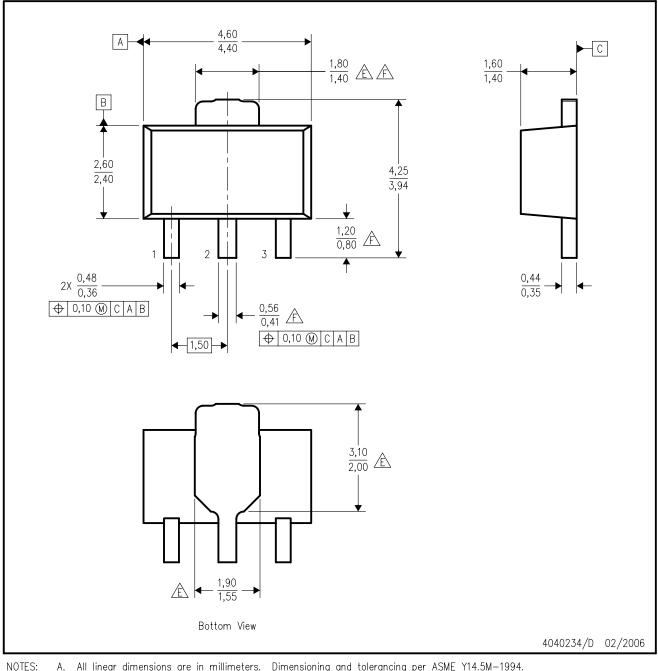


DBZ0003A

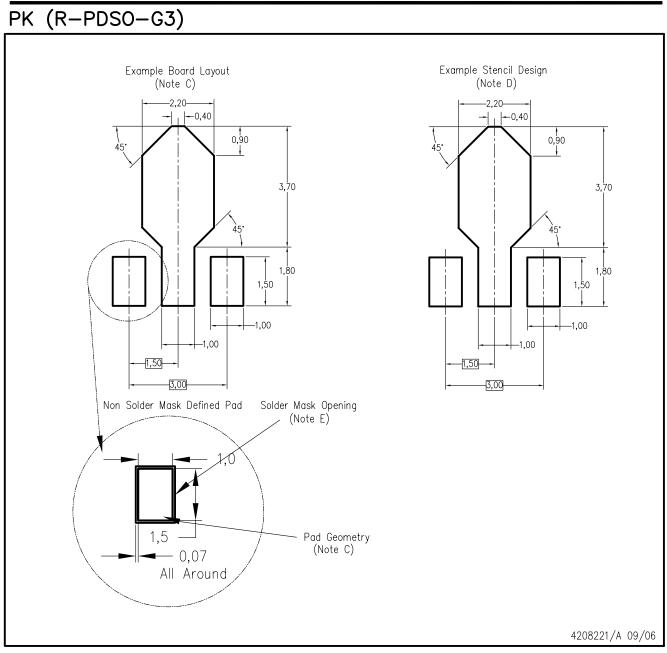
EXAMPLE STENCIL DESIGN

SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

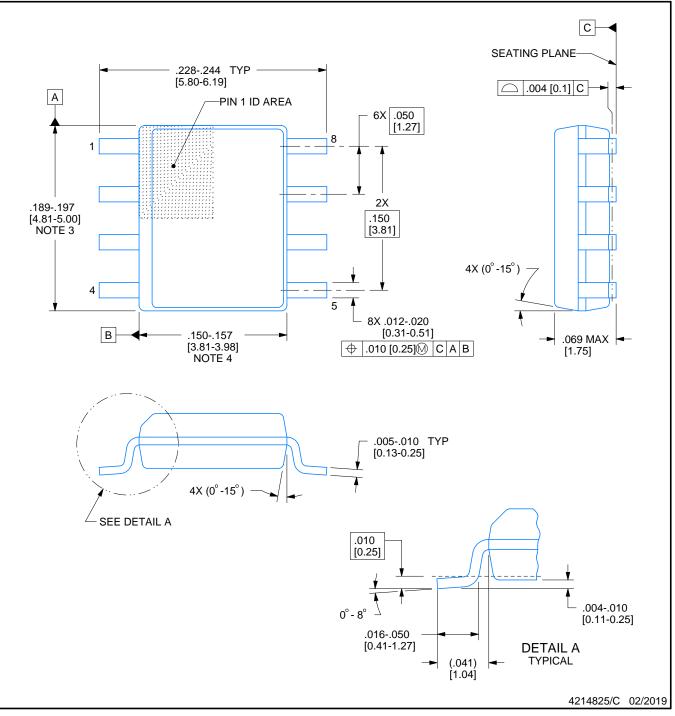

PK (R-PSSO-F3)

PLASTIC SINGLE-IN-LINE PACKAGE

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.
 - Β. This drawing is subject to change without notice.
 - The center lead is in electrical contact with the tab. C.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion not to exceed 0.15 per side. D.
 - A Thermal pad contour optional within these dimensions.
 - 🖄 Falls within JEDEC TO-243 variation AA, except minimum lead length, pin 2 minimum lead width, minimum tab width.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

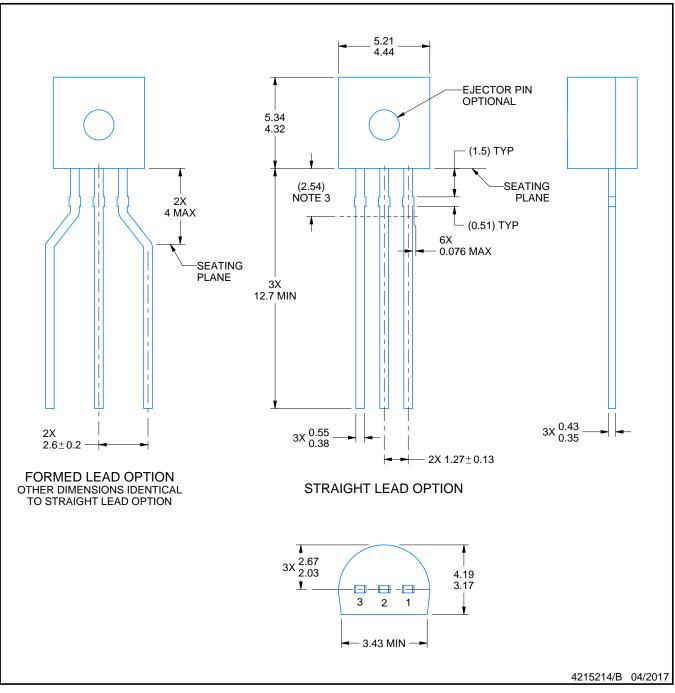
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

GENERIC PACKAGE VIEW

TO-92 - 5.34 mm max height TRANSISTOR OUTLINE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


LP0003A

PACKAGE OUTLINE

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
 Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

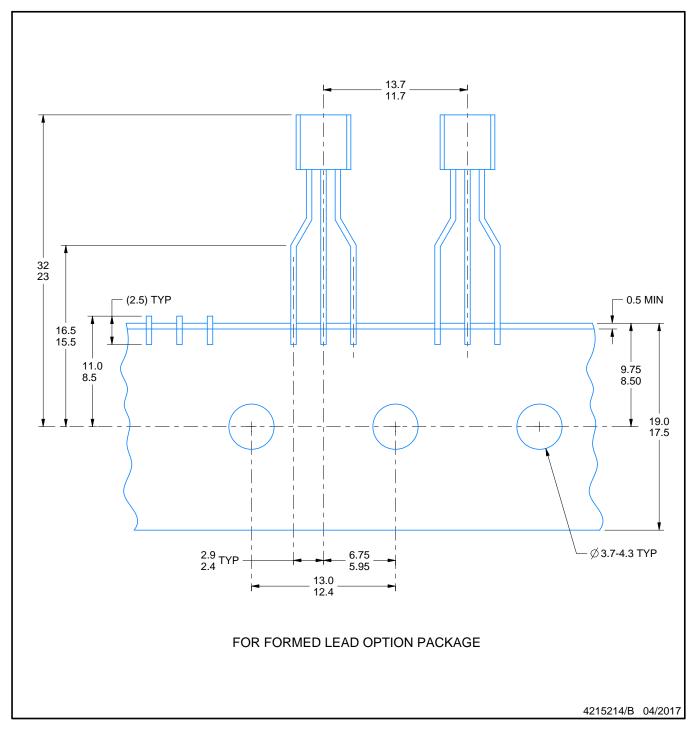
 - a. Straight lead option available in bulk pack only.b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

LP0003A

EXAMPLE BOARD LAYOUT

TO-92 - 5.34 mm max height

TO-92

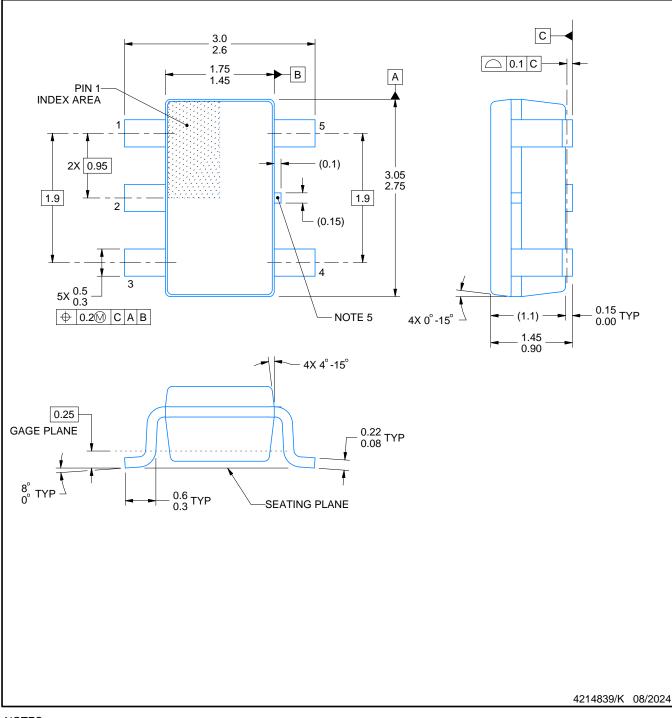


LP0003A

TAPE SPECIFICATIONS

TO-92 - 5.34 mm max height

TO-92


DBV0005A

PACKAGE OUTLINE

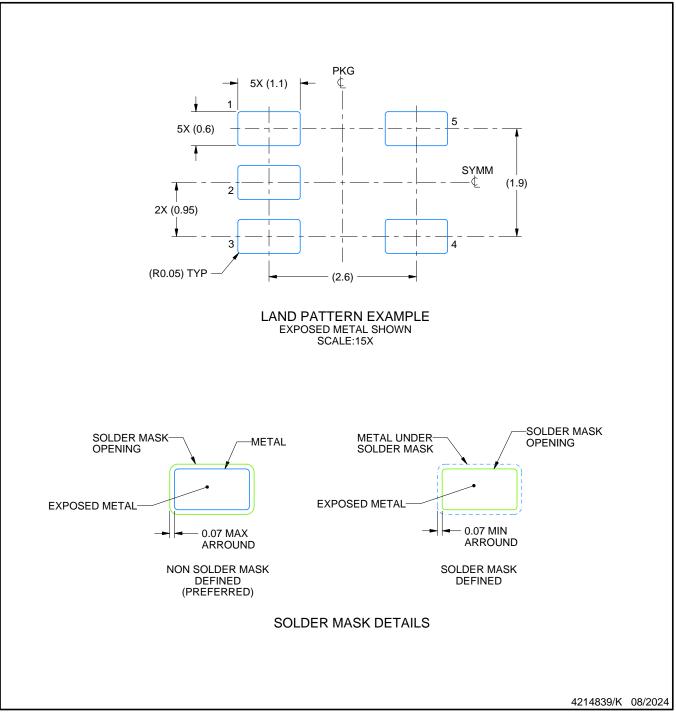
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



DBV0005A

EXAMPLE BOARD LAYOUT

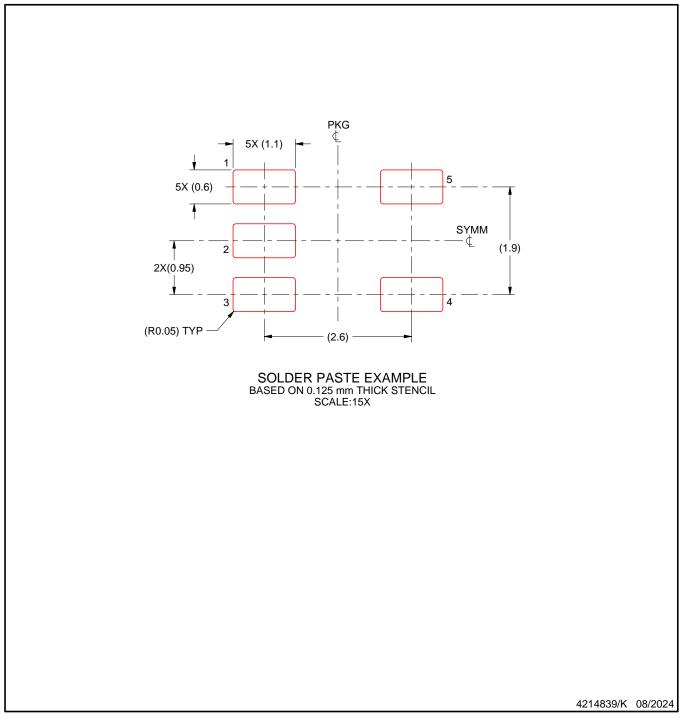
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0005A

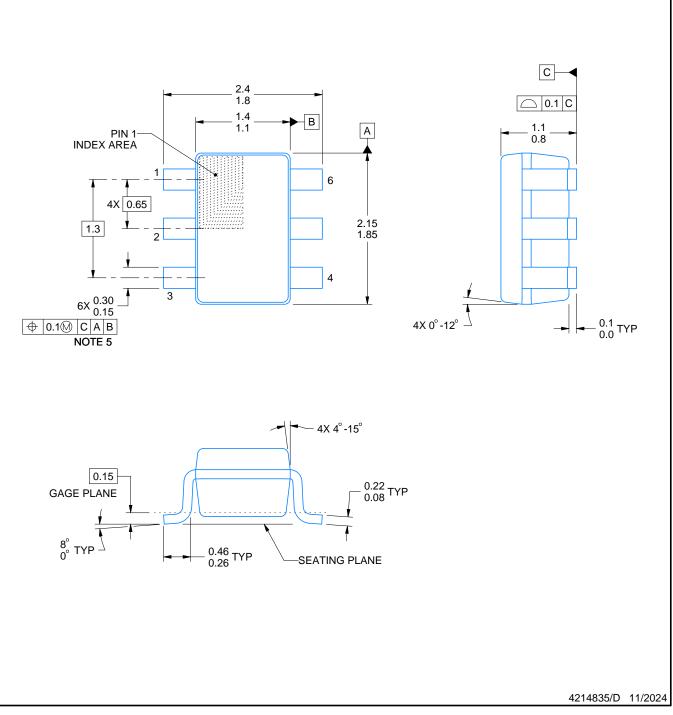
EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DCK0006A

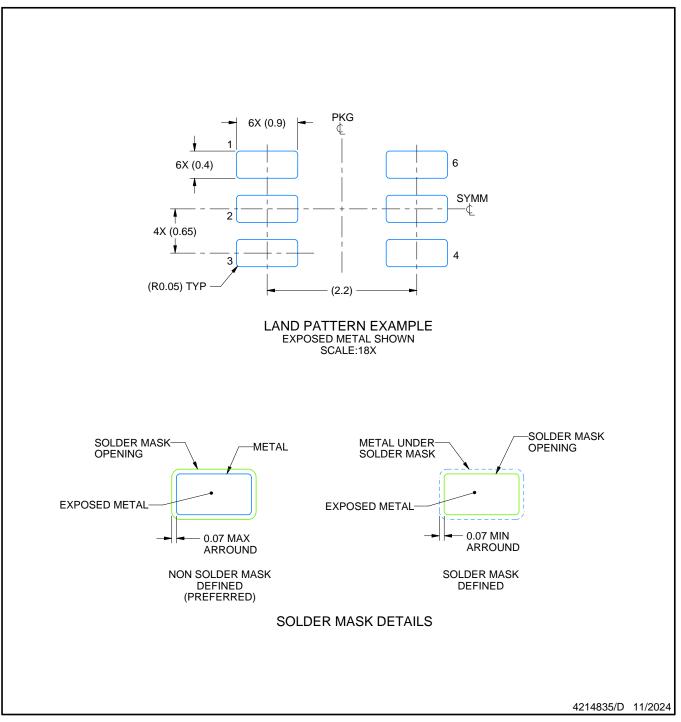
PACKAGE OUTLINE

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing an integration of a constraint of the minimeters. Any dimensions in parentnesis are for reference only. Dimensioning and to per ASME Y14.5M.
 This drawing is subject to change without notice.
 Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 Falls within JEDEC MO-203 variation AB.



DCK0006A

EXAMPLE BOARD LAYOUT

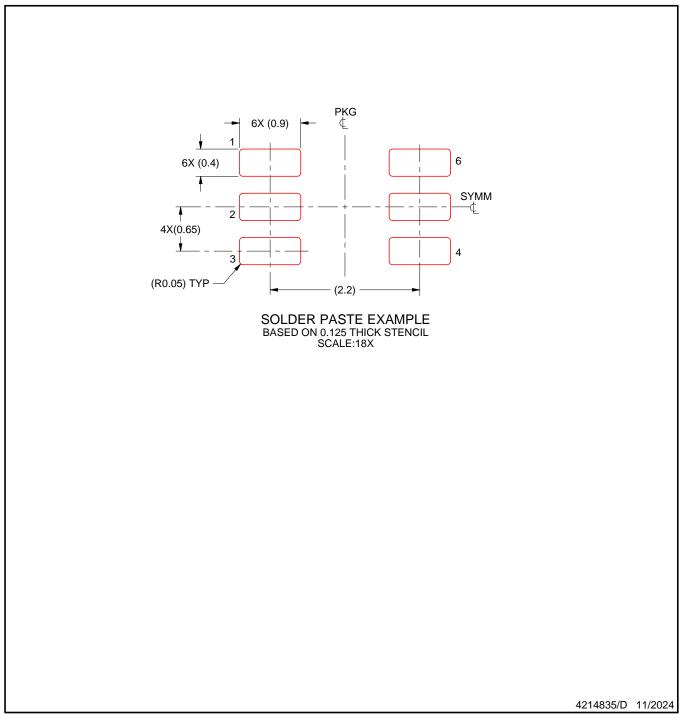
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCK0006A

EXAMPLE STENCIL DESIGN

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated