

SN74LV4051A-Q1 Automotive 8-Channel Analog Multiplexer or Demultiplexer

1 Features

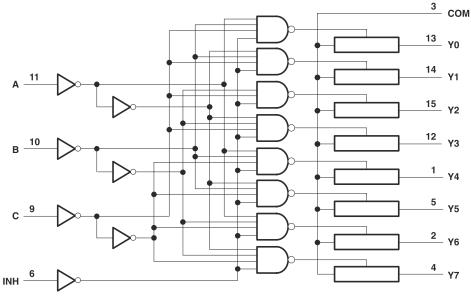
- · Qualified for automotive applications
- AEC-Q100 qualified with the following results:
 - Device temperature grade 1: -40°C to +125°C ambient operating temperature range
 - Device HBM ESD classification level 2
 - Device CDM ESD classification level C4B
- 1.65V to 5.5V V_{CC} operation
- Supports mixed-mode voltage operation
 on all ports
- · High on-off output-voltage ratio
- · Low crosstalk between switches
- Individual switch controls
- · Extremely low input current
- Latch-up performance exceeds 100mA per JESD 78, class II

2 Applications

- Automotive infotainment and cluster
- Telematics, eCall

3 Description

This 8-channel CMOS analog multiplexer and demultiplexer is designed for 1.65V to 5.5V V_{CC} operation.


The SN74LV4051A-Q1 handles analog and digital signals. Each channel permits signals with amplitudes up to 5.5V (peak) to be transmitted in either direction.

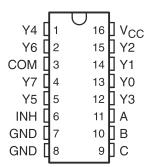
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾							
	PW (TSSOP, 16)	5mm × 6.4mm							
SN74LV4051A-Q1	D (SOIC, 16)	9.9mm × 6mm							
	DYY (SOT-23- THIN, 16)	4.2mm x 3.26mm							

- (1) For more information, see Section 11.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.

Logic Diagram (Positive Logic)


Table of Contents

1 Features	1
2 Applications	1
3 Description	
4 Pin Configuration and Functions	
5 Specifications	4
5.1 Absolute Maximum Ratings	4
5.2 ESD Ratings	4
5.3 Thermal Information: SN74LV4051A-Q1	
5.4 Recommended Operating Conditions	
5.5 Electrical Characteristics	<mark>6</mark>
5.6 Timing Characteristics V _{CC} = 2.5 V ± 0.2 V	<mark>8</mark>
5.7 Timing Characteristics V _{CC} = 3.3 V ± 0.3 V	<mark>8</mark>
5.8 Timing Characteristics V _{CC} = 5 V ± 0.5 V	<mark>8</mark>
5.9 AC Characteristics	<mark>9</mark>
6 Parameter Measurement Information	10
7 Detailed Description	13
7.1 Overview	

7.2 Functional Block Diagram	13
7.3 Feature Description.	
7.4 Device Functional Modes	13
8 Application and Implementation	. 14
8.1 Application Information	14
8.2 Typical Application	
8.3 Power Supply Recommendations	15
8.4 Layout	15
9 Device and Documentation Support	16
9.1 Receiving Notification of Documentation Updates.	16
9.2 Support Resources	16
9.3 Trademarks	16
9.4 Electrostatic Discharge Caution	16
9.5 Glossary	
10 Revision History	16
11 Mechanical, Packaging, and Orderable	
Information	16

4 Pin Configuration and Functions

Figure 4-1. D, PW or DYY Package, 16-Pin SOIC, TSSOP, or SOT-23-THIN (Top View)

PIN			DESCRIPTION
NAME	NO.		DESCRIPTION
Y4	1	(2)	Input to mux
Y6	2	(2)	Input to mux
СОМ	3	O ⁽²⁾	Output of mux
Y7	4	(2)	Input to mux
Y5	5	(2)	Input to mux
INH	6	l ⁽²⁾	Enables the outputs of the device. Logic low level with turn the outputs on, high level will turn them off.
GND	7		Ground
GND	8	_	Ground
С	9	I	Selector line for outputs (see Section 7.4 for specific information)
В	10	I	Selector line for outputs (see Section 7.4 for specific information)
A	11	I	Selector line for outputs (see Section 7.4 for specific information)
Y3	12	(2)	Input to mux
Y0	13	(2)	Input to mux
Y1	14	(2)	Input to mux
Y2	15	(2)	Input to mux
Vcc	16	I	Device power input

Table 4-1. Pin Functions

(1) I = input, O = output

(2) These I/O descriptions represent the device when used as a multiplexer, when this device is operated as a demultiplexer pins Y0-Y7 may be considered outputs (O) and the COM pin may be considered inputs (I).

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)^{(1) (3)}

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7.0	V
VI	Logic input voltage range		-0.5	7.0	V
V _{IO}	Switch I/O voltage range ^{(2) (3)}		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0	-20		mA
I _{IOK}	Switch IO diode clamp current	V_{IO} < 0 or V_{IO} > V_{CC}	-50	50	mA
IT	Switch continuous current	V_{IO} = 0 to V_{CC}		±25	mA
	Continuous current through V _{CC}	or GND		±50	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.

(3) This value is limited to 5.5 V maximum

5.2 ESD Ratings

				VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per AEC Q100-011	All pins	±500	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Thermal Information: SN74LV4051A-Q1

		SN74LV4051A-Q1	SN74LV4051A-Q1	
THERMAL METRIC ⁽¹⁾		PW (TSSOP)	DYY (SOT)	UNIT
		16 PINS	16 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	140.2	199.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	72.6	121.2	°C/W
R _{θJB}	Junction-to-board thermal resistance	98.7	129.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	13.4	24.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	97.3	126.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	NOM MAX	UNIT
V _{CC}	Supply voltage		1 ⁽²⁾	5.5	V
		V _{CC} = 1.65	1.2	5.5	
		V _{CC} = 2 V	1.5	5.5	
V _{IH}	High-level input voltage, logic control inputs	V _{CC} = 2.3 V to 2.7 V	V _{CC} x 0.7	5.5	V
		V _{CC} = 3 V to 3.6 V	V _{CC} x 0.7	5.5	
		V _{CC} = 4.5 V to 5.5 V	V _{CC} x 0.7	$\begin{array}{c cccc} (2) & 5.5 \\ \hline 1.2 & 5.5 \\ \hline 1.5 & 5.5 \\ \hline 1.5 & 5.5 \\ \hline 1.5 & 5.5 \\ \hline 1.7 $	
		V _{CC} = 1.65 V	0	0.4	
	Low-level input voltage, logic control inputs	V _{CC} = 2	0	0.5	
V _{IL}		V _{CC} = 2.3V to 2.7V	0	V _{CC} x 0.3	V
V _{IL}		V _{CC} = 3 V to 3.6 V	0	V _{CC} x 0.3	
		V _{CC} = 4.5 V to 5.5 V	0	V _{CC} x 0.3	
VI	Logic control input voltage		0	5.5	V
V _{IO}	Switch input or output voltage		0	V _{CC}	V
		V _{CC} = 1.0 V to 2.0 V		500	
A+/A\/	Logic input transition rise or fall rate	V _{CC} = 2.0 V to 2.7 V		200	ba //
Δt/ΔV	Logic input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Ambient temperature	i	-40	125	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report *Implications of Slow or Floating CMOS Inputs*, SCBA004. When using a V_{CC} of ≤ 1.2 V, it is recommended to use these devices only for transmitting digital signals. When supply voltage is near (1)

(2) 1.2 V the analog switch ON resistance becomes very non-linear

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Condition	T _A	V _{cc}	MIN	ТҮР	MAX	UNIT
			25°C			60	150	
			–40°C to 85°C	1.65 V			225	
			–40°C to 125°C				225	
			25°C			38	180	
			–40°C to 85°C	2.3 V		225		
-	ON-state switch	$V_{i} = V_{oo} \text{ or } (fNI)$	–40°C to 125°C				225	Ω
r _{ON}	resistance		25°C			30	150	12
			–40°C to 85°C	3 V			190	
			–40°C to 125°C				190	
			25°C			22	75	
			–40°C to 85°C	4.5 V			100	
			–40°C to 125°C				100	

5.5 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Condition	T _A	V _{cc}	MIN	TYP	MAX	UNIT
			25°C			220	600	
			–40°C to 85°C	1.65 V			700	
			–40°C to 125°C				700	
			25°C			113	500	
			–40°C to 85°C	2.3 V			600	
•	Peak ON-state	$I_T = 2 \text{ mA},$ V _I = GND to V _{CC} ,	–40°C to 125°C				600	Ω
ON(p)	resistance	$V_{\rm INH} = V_{\rm IL}$	25°C			54	180	12
			–40°C to 85°C	3 V			225	
			–40°C to 125°C				225	
			25°C			31	100	
			–40°C to 85°C	4.5 V	·	12	125	
			–40°C to 125°C				125	
			25°C			3	40	
			–40°C to 85°C	1.65 V			40	
			–40°C to 125°C				40	
			25°C			2.1	30	
			–40°C to 85°C	2.3 V			40	_
٨٣	Difference in ON-	$I_T = 2 \text{ mA},$ V _I = GND to V _{CC} ,	–40°C to 125°C				40	Ω
∆r _{ON}	state resistance between switches	$V_{I} = GND to V_{CC},$ $V_{INH} = V_{IL}$	25°C			1.4	20	12
			–40°C to 85°C	3 V			30	
			–40°C to 125°C				30	
			25°C			1.3	15	
			–40°C to 85°C	4.5 V			20	
			–40°C to 125°C				20	
			25°C		-0.1		0.1	
IH IL	Control input current	$V_{I} = 5.5 V \text{ or GND}$	–40°C to 85°C	0 to 5.5 V	-1		1	μA
'IL			–40°C to 125°C		-2		2	
		$V_{I} = V_{CC}$ and $V_{O} =$	25°C		-0.1		0.1	
0 0	OFF-state switch	GND, or V _I = GND and V _O =	–40°C to 85°C	5.5 V	-1		1	μA
I _{S(off)}	leakage current	V_{CC} , $V_{INH} = V_{IH}$	–40°C to 125°C	0.5 V	-2		2	μΛ
			25°C		-0.1		0.1	
S(on)	ON-state switch leakage current	$V_{I} = V_{CC}$ or GND, $V_{INH} = V_{IL}$	–40°C to 85°C	5.5 V	-1		1	μA
()		VINH - VIL	–40°C to 125°C		-2		2	
			25°C			0.01		
сс	Supply current	V _I = V _{CC} or GND V _{INH} = 0 V	–40°C to 85°C	5.5 V			20	μA
		VINH - U V	–40°C to 125°C				40	
CIC	Control input capacitance	f = 10 MHz	25°C	3.3 V		2		pF
C _{IS}	Common terminal capacitance	f = 10 MHz	25°C	3.3 V		23.4		pF
C _{OS}	Switch ternminal capacitance	f = 10 MHz	25°C	3.3 V		5.7		pF
C _F	Feedthrough capacitance	f = 10 MHz	25°C	3.3 V		0.5		pF

7

5.5 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		Condition	T _A	V _{cc}	MIN	TYP M	AX	UNIT
C _{PD}	Power dissipation capacitance	C _L = 50 pF, f = 10 MHz	25°C	3.3 V		5.9		pF

5.6 Timing Characteristics V_{CC} = 2.5 V \pm 0.2 V

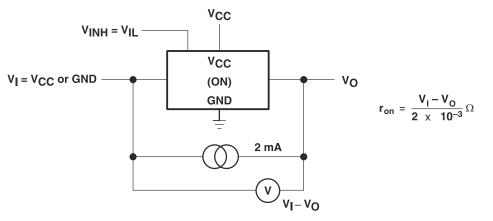
I	PARAMETER	FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
	_				25°C		1.9	10	
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF	–40°C to 85°C			16	ns
-FIL					–40°C to 125°C			18	
					25°C		6.6	18	
t _{PZH} Enable delay t _{PZL} time	INH	COM or Yn	C _L = 15 pF	–40°C to 85°C			23	ns	
					–40°C to 125°C			25	
					25°C		7.4	18	
t _{PHZ} Disable o t _{PLZ} time	Disable delay	INH	COM or Yn	C _L = 15 pF	–40°C to 85°C			23	
					–40°C to 125°C			25	
					25°C		3.8	12	
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF	–40°C to 85°C			18	ns
PHL					–40°C to 125°C			20	
					25°C		7.8	28	
t _{PZH}	Enable delay time	INH	COM or Yn	C _L = 50 pF	–40°C to 85°C			35	ns
t _{PZL}	une				–40°C to 125°C			35	
					25°C		11.5	28	
t _{PHZ}	Disable delay time	* INH CON	COM or Yn	C _L = 50 pF	–40°C to 85°C			35	ns
t _{PLZ}	unic				–40°C to 125°C			35	

5.7 Timing Characteristics V_{CC} = 3.3 V \pm 0.3 V

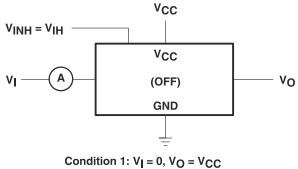
PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
				C _L = 50 pF	25°C		2.5	9	
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM		–40°C to 85°C			12	ns
					–40°C to 125°C			14	
	Enable delay time	e delay INH		C _L = 50 pF	25°C		5.5	20	
t _{PZH} t _{PZL}			COM or Yn		–40°C to 85°C			25	ns
PZL					–40°C to 125°C			25	
				C _L = 50 pF	25°C		8.8	20	
t _{PHZ} t _{PLZ}	Disable delay time	^{ay} INH (COM or Yn		–40°C to 85°C			25	ns
PLZ					–40°C to 125°C			25	

5.8 Timing Characteristics V_{CC} = 5 V ± 0.5 V

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
t _{PLH} Propagation t _{PHL} delay time				C _L = 50 pF	25°C		1.5	6	
			Yn or COM		–40°C to 85°C			8	ns
					–40°C to 125°C			10	


5.8 Timing Characteristics V_{CC} = 5 V ± 0.5 V (continued)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
					25°C		4	14	
t _{PZH} Enable delay t _{PZL} time	INH	COM or Yn	C _L = 50 pF	–40°C to 85°C			18	ns	
					–40°C to 125°C			18	
		/ INH	COM or Yn	C _L = 50 pF	25°C		6.2	14	
t _{PHZ} t _{PLZ}	Disable delay time				–40°C to 85°C			18	ns
PLZ					–40°C to 125°C			18	


5.9 AC Characteristics

PARAMETER	FROM (INPUT)	FROM (INPUT) TO (OUTPUT)		CONDIT	IONS	MIN TYP	MAX	UNIT	
Frequency				C _L = 50 pF, R _L =	V _{CC} = 2.3 V	20			
response (switch	COM or Yn	Yn or COM	SN74LV4051	600 Ω, F _{in} = 1 MHz (sine	V _{CC} = 3 V	25		MHz	
on)				wave)	V _{CC} = 4.5 V	35			
Feedthrough				C _L = 50 pF, R _L =	V _{CC} = 2.3 V	-45			
attenuation (switch off)	COM or Yn	Yn or COM	ALL	600 Ω, F _{in} = 1 MHz (sine	V _{CC} = 3 V	-45		dB	
					V _{CC} = 4.5 V	-45			
Crosstalk				$\begin{array}{l} C_L = 50 \text{ pF, } R_L = \\ 600 \ \Omega, \\ F_{in} = 1 \ \text{MHz} \ \text{(sine wave)} \end{array}$		20		mV	
(between any	COM or Yn	Yn or COM	ALL		V _{CC} = 3 V	35			
switches)					V _{CC} = 4.5 V	60			
				C _L = 50 pF, R _L =	$V_{I} = 2 V_{p-p}$ $V_{CC} = 2.3 V$	0.1			
Sine-wave distortion	COM or Yn	Yn or COM	ALL	10 kΩ, F _{in} = 1 kHz (sine	$V_{I} = 2.5 V_{p-p}$	0.1		%	
				wave)	$V_{I} = 4 V_{p-p}$ $V_{CC} = 4.5 V$	0.1			

6 Parameter Measurement Information

Condition 2: $V_I = V_{CC}$, $V_O = 0$

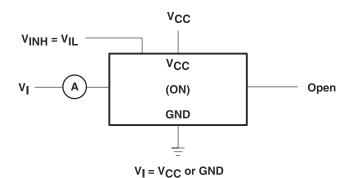
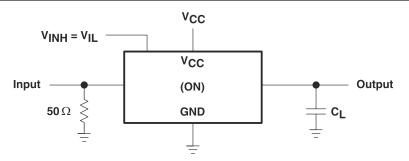



Figure 6-3. On-State Switch Leakage-Current Test Circuit

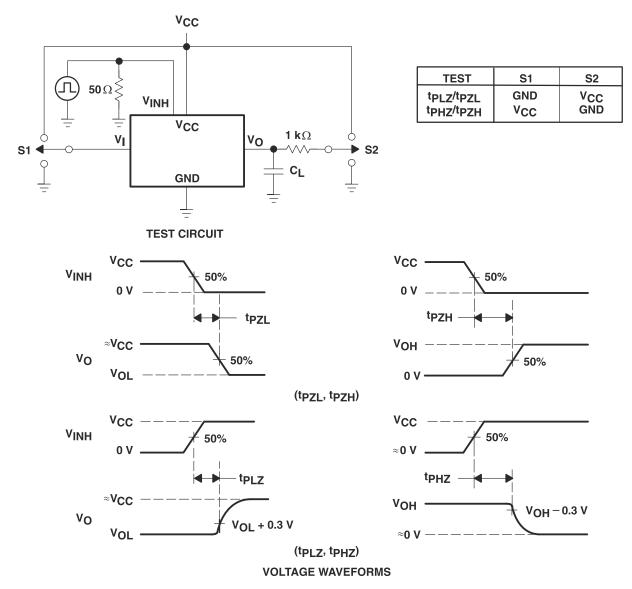
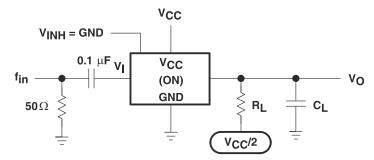



Figure 6-5. Switching Time (t_{PZL}, t_{PLZ}, t_{PZH}, t_{PHZ}), Control to Signal Output

NOTE A: fin is a sine wave.

Figure 6-6. Frequency Response (Switch On)

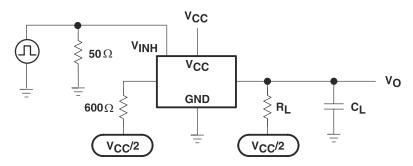


Figure 6-7. Crosstalk (Control Input, Switch Output)

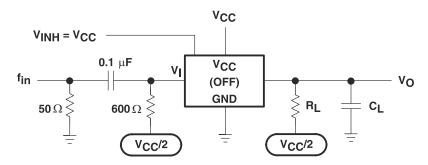


Figure 6-8. Feedthrough Attenuation (Switch Off)

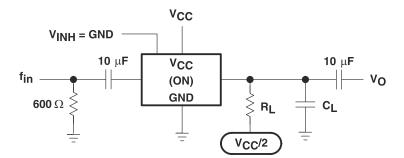
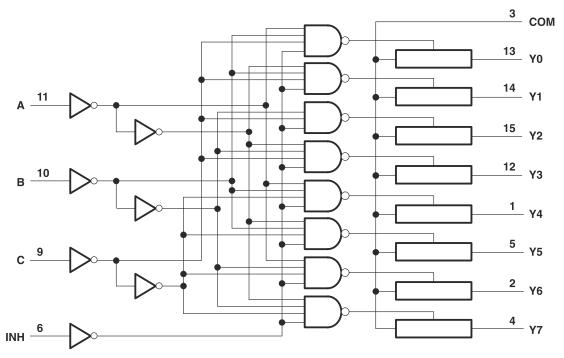


Figure 6-9. Sine-Wave Distortion



7 Detailed Description

7.1 Overview

This device is an 8-channel analog multiplexer. A multiplexer is used when several signals must share the same device or resource. This device allows the selection of one of these signals at a time, for analysis or propagation.

7.2 Functional Block Diagram

7.3 Feature Description

This device contains one 8-channel multiplexer for use in a variety of applications, and can also be configured as demultiplexer by using the COM pin as an input and the Yx pins as outputs. This device is qualified for automotive applications and has an extended temperature range of -40°C to 125°C (maximum depends on package type).

7.4 Device Functional Modes

Table 7-1. Function Table										
	INP	UTS		ON						
INH	С	В	Α	CHANNEL						
L	L	L	L	Y0						
L	L	L	Н	Y1						
L	L	Н	L	Y2						
L	L	Н	Н	Y3						
L	Н	L	L	Y4						
L	Н	L	Н	Y5						
L	Н	Н	L	Y6						
L	Н	Н	н	Y7						
Н	Х	Х	Х	None						

lo 7.1 Eurotion Table

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

A multiplexer is used in applications where multiple signals share a resource. In the example below, several different sensors are connected to the analog-to-digital converter (ADC) of a microcontroller unit (MCU).

8.2 Typical Application

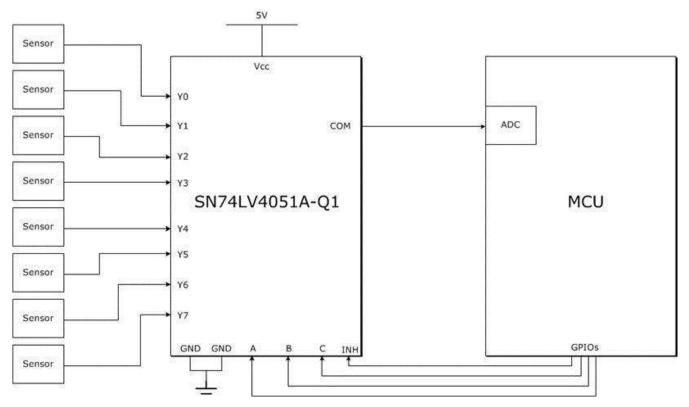


Figure 8-1. Example of Multiplexer Use With Analog Sensors and the ADC of an MCU

8.2.1 Design Requirements

Designing with the SN74LV4051A-Q1 device requires a stable input voltage between 2 V (see *Recommended Operating Conditions* for details) and 5.5V. Another important design consideration are the characteristics of the signal being multiplexed—ensure no important information is lost due to timing or incompatibility with this device.

8.2.2 Detailed Design Procedure

Processing eight different analog signals would normally require eight separate ADCs, but Figure 8-1 shows how to achieve this using only one ADC and four GPIOs (general-purpose input/outputs).

8.3 Power Supply Recommendations

Most systems have a common 3.3V or 5V rail that can supply the Vcc pin of this device. If this is not available, a switched-mode power supply (SMPS) or a low dropout regulator (LDO) can supply this device from a higher voltage rail.

8.4 Layout

8.4.1 Layout Guidelines

TI recommends keeping the signal lines as short and as straight as possible. Incorporation of microstrip or stripline techniques is also recommended when signal lines are more than 1 inch long. These traces must be designed with a characteristic impedance of either 50Ω or 75Ω , as required by the application. Do not place this device too close to high-voltage switching components, as they may cause interference.

8.4.2 Layout Example

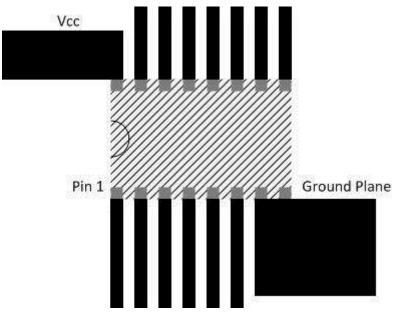


Figure 8-2. Layout Schematic

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision G (September 2024) to Revision H (October 2024)	Page
•	Added 50mA to the Switch IO diode clamp current	4

С	hanges from Revision F (June 2024) to Revision G (September 2024)	Page
•	Added DYY package and size	1
•	Added DYY package	
•	Added new VIH and VIL Specifications at 1.65V Vcc	<mark>6</mark>

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
CLV4051ATDWRG4Q1	NRND	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	
CLV4051ATPWRG4Q1	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 105	L4051AQ	
SN74LV4051AQDYYRQ1	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV4051Q	Samples
SN74LV4051AQPWRQ1	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	4051AQ1	Samples
SN74LV4051ATDRQ1	NRND	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	
SN74LV4051ATDWRQ1	NRND	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	
SN74LV4051ATPWRQ1	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

PACKAGE OPTION ADDENDUM

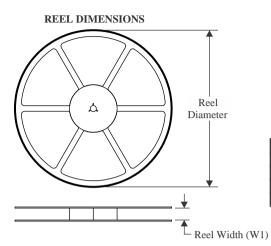
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

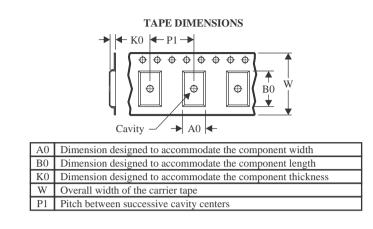
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV4051A-Q1 :

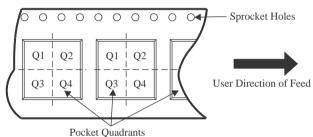
- Catalog : SN74LV4051A
- Enhanced Product : SN74LV4051A-EP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

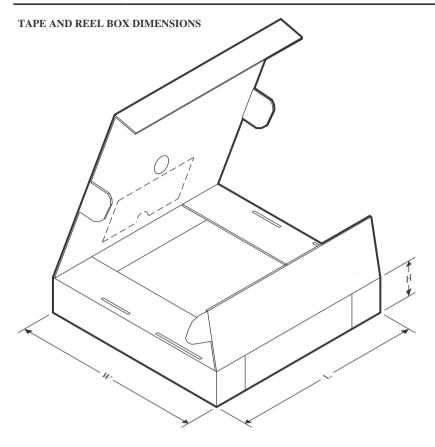


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CLV4051ATDWRG4Q1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74LV4051AQDYYRQ1	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
SN74LV4051AQPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV4051AQPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV4051ATDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74LV4051ATPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Feb-2025

*All dimensions are nominal	

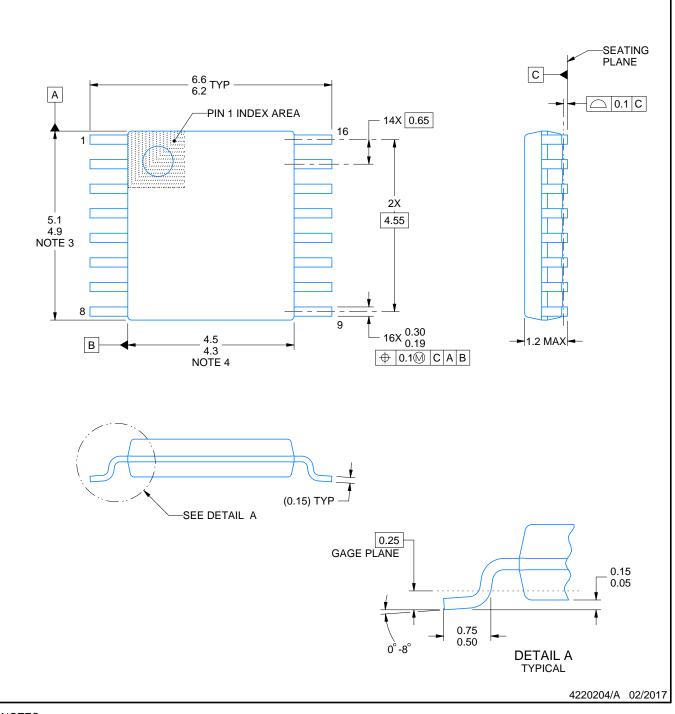
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CLV4051ATDWRG4Q1	SOIC	DW	16	2000	350.0	350.0	43.0
SN74LV4051AQDYYRQ1	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
SN74LV4051AQPWRQ1	TSSOP	PW	16	2000	353.0	353.0	32.0
SN74LV4051AQPWRQ1	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74LV4051ATDWRQ1	SOIC	DW	16	2000	350.0	350.0	43.0
SN74LV4051ATPWRQ1	TSSOP	PW	16	2000	356.0	356.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.


PW0016A

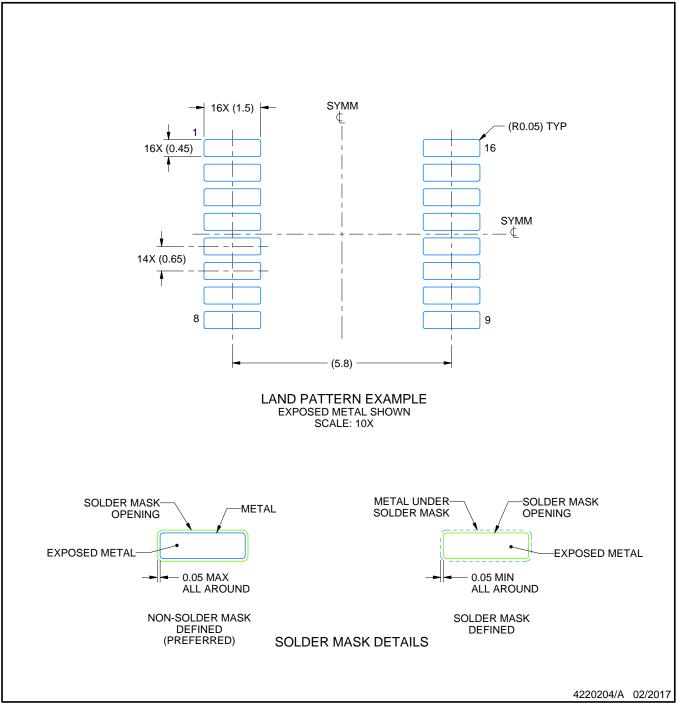
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

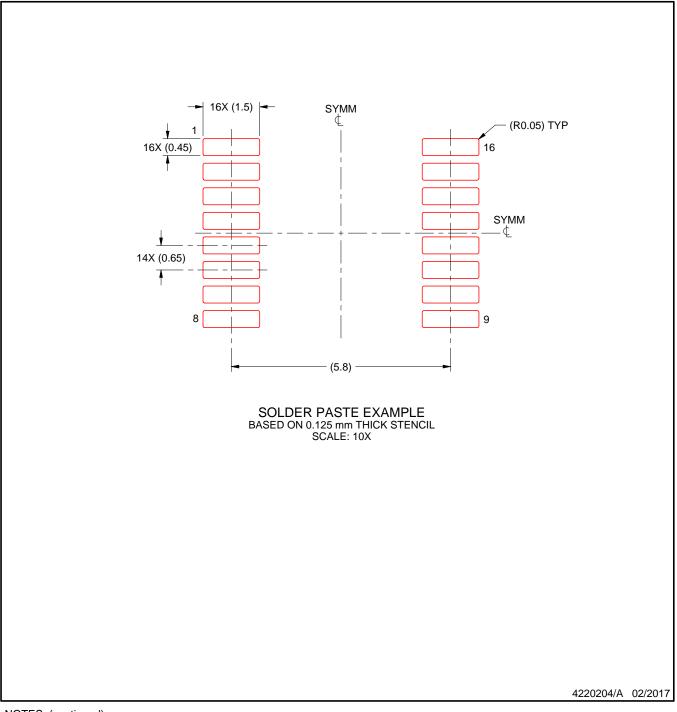
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

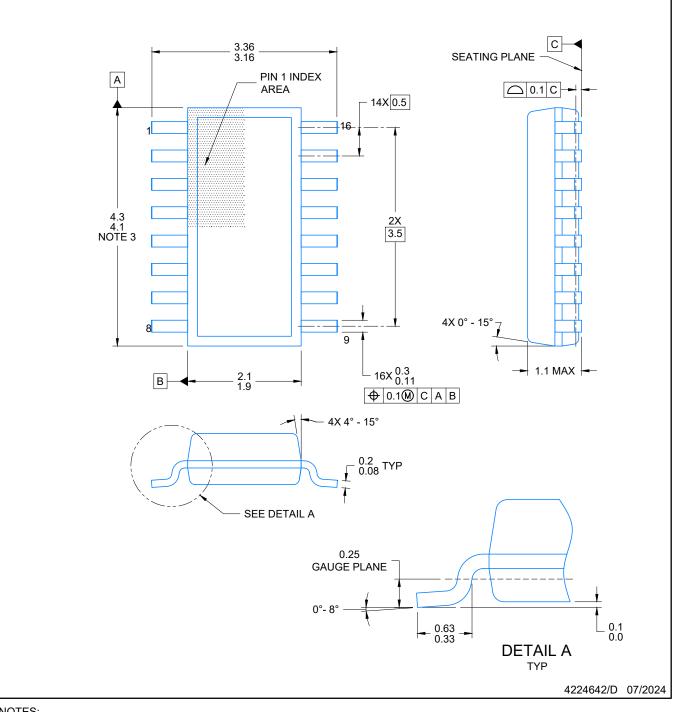
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.


^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DYY0016A

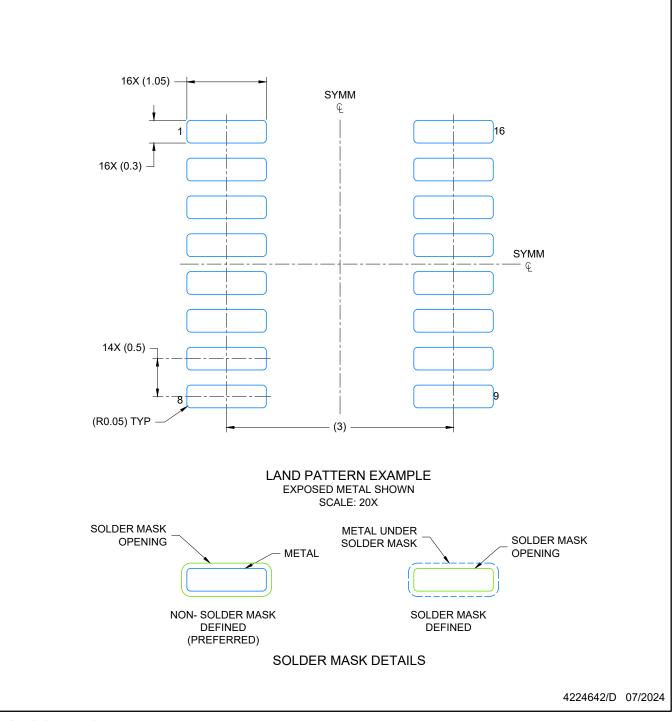
PACKAGE OUTLINE

SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 3. 0.15 per side.
- This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side. 4.
- Reference JEDEC Registration MO-345, Variation AA 5.



DYY0016A

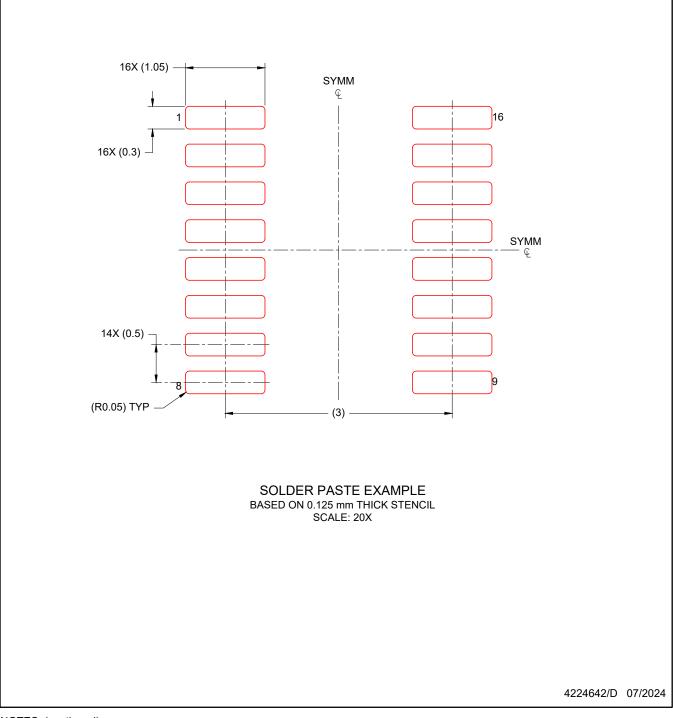
EXAMPLE BOARD LAYOUT

SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DYY0016A

EXAMPLE STENCIL DESIGN

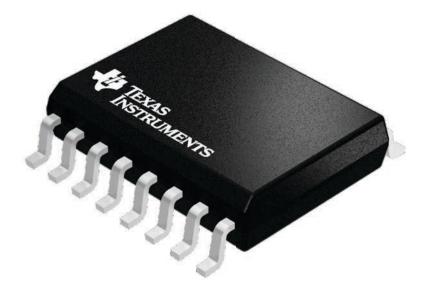
SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DW 16

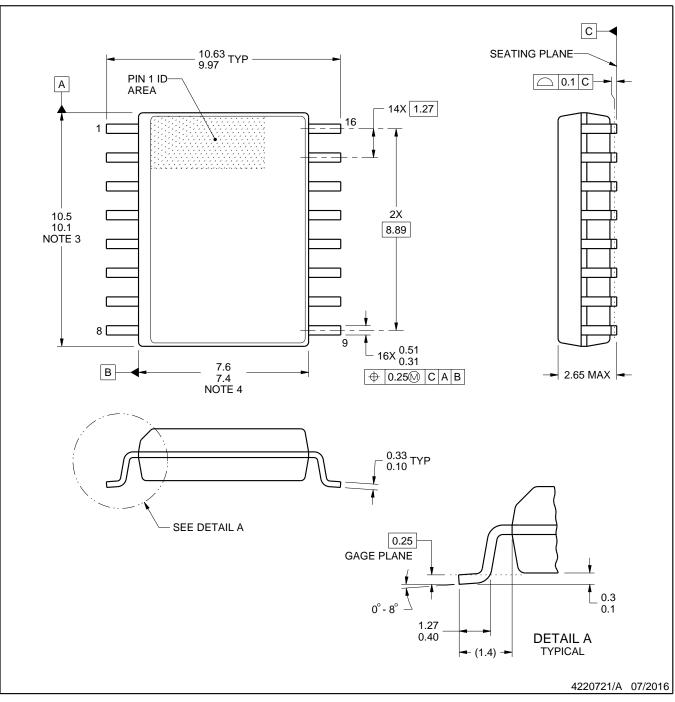

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

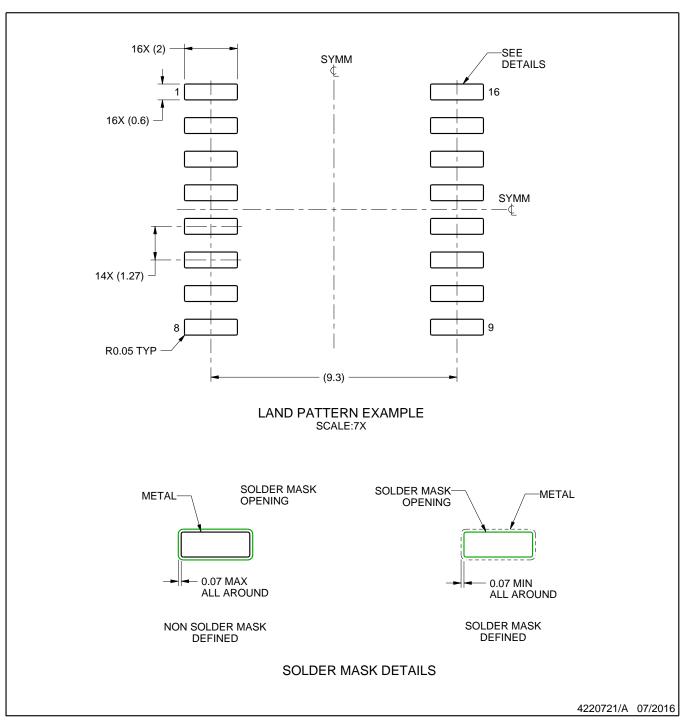
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

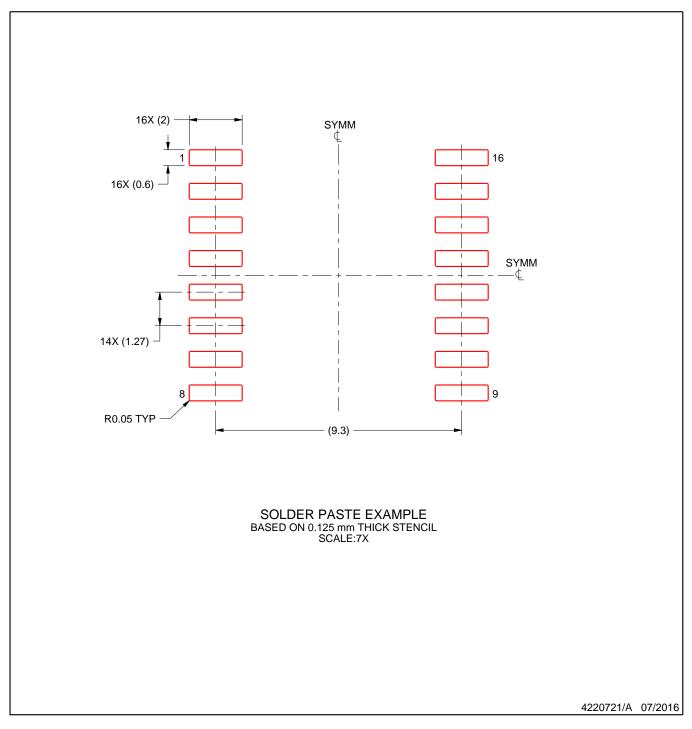
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated