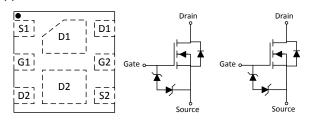


CSD85301Q2

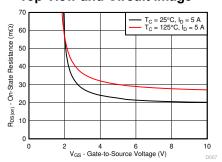
SLPS521A - DECEMBER 2014 - REVISED MAY 2024

CSD85301Q2 20V Dual N-Channel NexFET™ Power MOSFETs

1 Features


- Low on-resistance
- **Dual independent MOSFETs**
- Space saving SON 2mm × 2mm plastic package
- Optimized for 5V gate driver
- Avalanche rated
- Pb and halogen free
- RoHS compliant

2 Applications


- Point-of-load synchronous buck converter for applications in networking, telecom, and computing systems
- Adaptor or USB input protection for notebook PCs and tablets
- **Battery protection**

3 Description

The CSD85301Q2 is a 20V, $23m\Omega$ N-Channel device with dual independent MOSFETs in a SON 2mm x 2mm plastic package. The two FETs were designed to be used in a half bridge configuration for synchronous buck and other power supply applications. Additionally, this part can be used for adaptor, USB input protection and battery charging applications. The dual FETs feature low drain to source on-resistance that minimizes losses and offers low component count for space constrained applications.

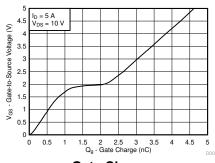
Top View and Circuit Image

R_{DS(on)} vs V_{GS}

Product Summary

T _A = 25°	С	TYPICAL VA	UNIT			
V _{DS}	Drain-to-Source Voltage	ain-to-Source Voltage 20				
Qg	Gate Charge Total (4.5V) 4.2					
Q _{gd}	Gate Charge Gate to Drain	1.0	nC			
		V _{GS} = 1.8V	65	mΩ		
B	Drain-to-Source On Resistance	V _{GS} = 2.5V	33	mΩ		
R _{DS(on)}	Dialii-to-Source Off Resistance	V _{GS} = 3.8V	25	mΩ		
		V _{GS} = 4.5V	23	mΩ		
V _{GS(th)}	Threshold Voltage 0.9					

Ordering Information


Device ⁽¹⁾	Media	Qty	Package	Ship
CSD85301Q2	7-Inch Reel	3000	SON 2mm x	Tape and
CSD85301Q2T	7-Inch Reel	250	2mm Plastic Package	Reel

For all available packages, see the orderable addendum at (1) the end of the data sheet.

Absolute Maximum Ratings

T _A = 2	5°C	VALUE	UNIT						
V _{DS}	Drain-to-Source Voltage	20	V						
V _{GS}	Gate-to-Source Voltage	±10	V						
I _D	Continuous Drain Current (Package limited)	5.0	Α						
I _{DM}	Pulsed Drain Current ⁽¹⁾	26	Α						
P _D	Power Dissipation ⁽²⁾	2.3	W						
T _J , T _{stg}	Operating Junction and Storage Temperature Range	-55 to 150	°C						
E _{AS}	Avalanche Energy, single pulse $I_D = 8.7A$, L = 0.1mH, $R_G = 25\Omega$	3.8	mJ						

- Max R_{θJA} = 185 °C/W, pulse duration ≤100μs, duty cycle (1)
- (2)Typical $R_{\theta JA}$ = 55 °C/W on a 1 inch², 2oz. Cu pad on a 0.06 inch thick FR4 PCB.

Gate Charge

Table of Contents

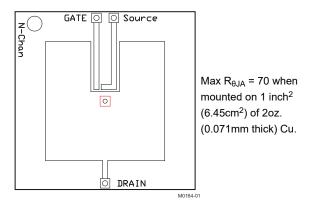
1 Features1	5.3 Trademarks
2 Applications1	
3 Description1	
4 Specifications3	
4.1 Electrical Characteristics3	
4.2 Thermal Information3	
4.3 Typical MOSFET Characteristics4	<u> </u>
5 Device and Documentation Support7	
5.1 Receiving Notification of Documentation Updates7 5.2 Support Resources	

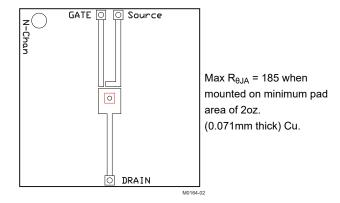
4 Specifications

4.1 Electrical Characteristics

(T_A = 25°C unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN TY	P MAX	UNIT
STATIC	CHARACTERISTICS				
BV _{DSS}	Drain-to-Source Voltage	V _{GS} = 0V, I _D = 250μA	20		V
I _{DSS}	Drain-to-Source Leakage Current	V _{GS} = 0V, V _{DS} = 16V		1	μΑ
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0V, V _{GS} = 10V		10	μA
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.6 0.	9 1.2	V
		V _{GS} = 1.8V, I _D = 0.5A	6	5 99	mΩ
Б	Dunin to Course On Booistones	$V_{GS} = 2.5V, I_D = 5A$	3	3 39	mΩ
R _{DS(on)}	Drain-to-Source On-Resistance	$V_{GS} = 3.8V, I_D = 5A$	2	5 29	mΩ
		$V_{GS} = 4.5V, I_D = 5A$	2	3 27	mΩ
9 _{fs}	Transconductance	$V_{DS} = 2V$, $I_D = 5A$	2	0	S
DYNAM	IC CHARACTERISTICS		<u> </u>		
C _{iss}	Input Capacitance		36	1 469	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 10V, f = 1MHz$	6	8 89	pF
C _{rss}	Reverse Transfer Capacitance		4	8 62	pF
R _G	Series Gate Resistance		7.	3	Ω
Q _g	Gate Charge Total (4.5V)		4.	2 5.4	nC
Q _{gd}	Gate Charge Gate-to-Drain	V - 40V L - 5A	1.	0	nC
Q _{gs}	Gate Charge Gate-to-Source	$V_{DS} = 10V, I_D = 5A$	1.	1	nC
Q _{g(th)}	Gate Charge at V _{th}		0.	5	nC
Q _{oss}	Output Charge	V _{DS} = 10V, V _{GS} = 0V	1.	3	nC
t _{d(on)}	Turn On Delay Time			6	ns
t _r	Rise Time	V _{DS} = 10V, V _{GS} = 5V,	2	6	ns
t _{d(off)}	Turn Off Delay Time	$I_{DS} = 5A$, $R_G = 0\Omega$	1-	4	ns
t _f	Fall Time		1	5	ns
DIODE (CHARACTERISTICS	·			
V _{SD}	Diode Forward Voltage	I _{SD} = 5A, V _{GS} = 0V	0.	3 1.0	V
Q _{rr}	Reverse Recovery Charge	V _{DS} = 10V, I _F = 5A,	7.	2	nC
t _{rr}	Reverse Recovery Time	di/dt = 300A/μs	1	4	ns


4.2 Thermal Information


(T_A = 25°C unless otherwise stated)

	THERMAL METRIC	MIN	TYP	MAX	UNIT
D	Junction-to-Ambient Thermal Resistance ⁽¹⁾			70	°C/W
R _{0JA}	Junction-to-Ambient Thermal Resistance ⁽²⁾			185	C/VV

 ⁽¹⁾ Device mounted on FR4 material with 1 inch² (6.45cm²), 2oz. (0.071mm thick) Cu.
 (2) Device mounted on FR4 material with minimum Cu mounting area.

4.3 Typical MOSFET Characteristics

(T_A = 25°C unless otherwise stated)

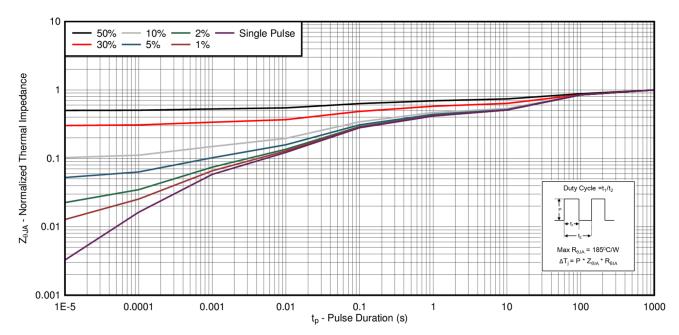
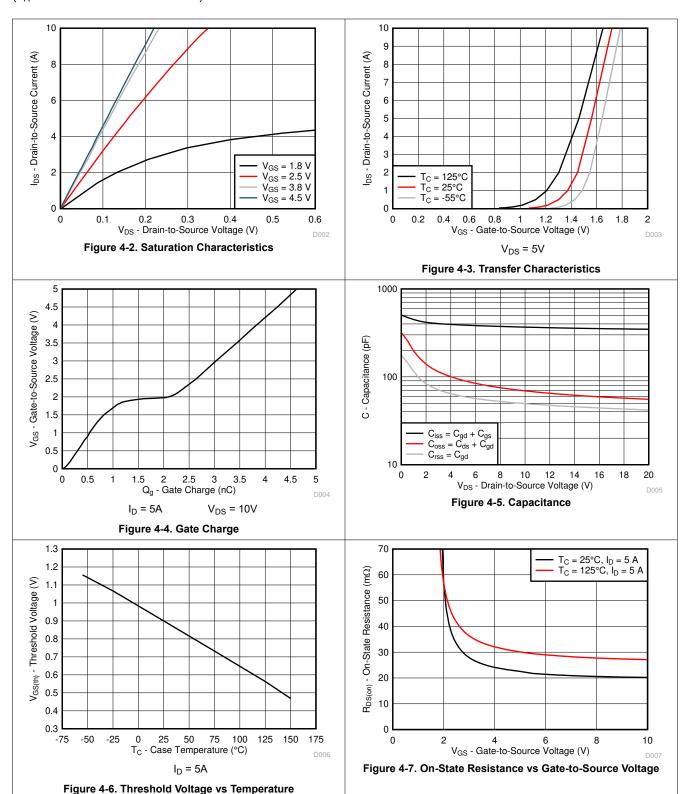
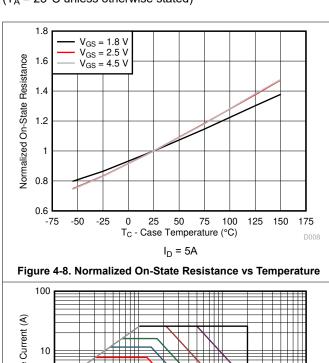



Figure 4-1. Transient Thermal Impedance

4.3 Typical MOSFET Characteristics (continued)

(T_A = 25°C unless otherwise stated)



 $T_C = 25$ °C $T_C = 125$ °C

4.3 Typical MOSFET Characteristics (continued)

(T_A = 25°C unless otherwise stated)

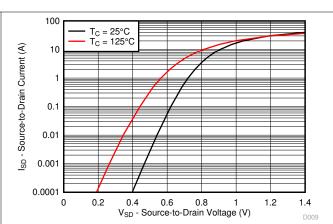
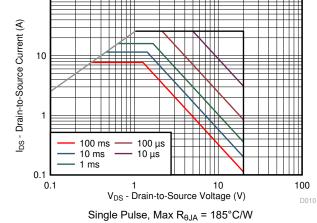



Figure 4-9. Typical Diode Forward Voltage

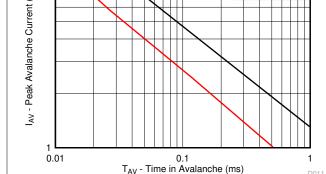
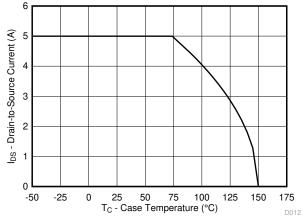



Figure 4-10. Maximum Safe Operating Area

Figure 4-11. Single Pulse Unclamped Inductive Switching

10

Figure 4-12. Maximum Drain Current vs Temperature

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

5 Device and Documentation Support

5.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

5.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.3 Trademarks

NexFET[™] and TI E2E[™] are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

5.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.5 Glossary

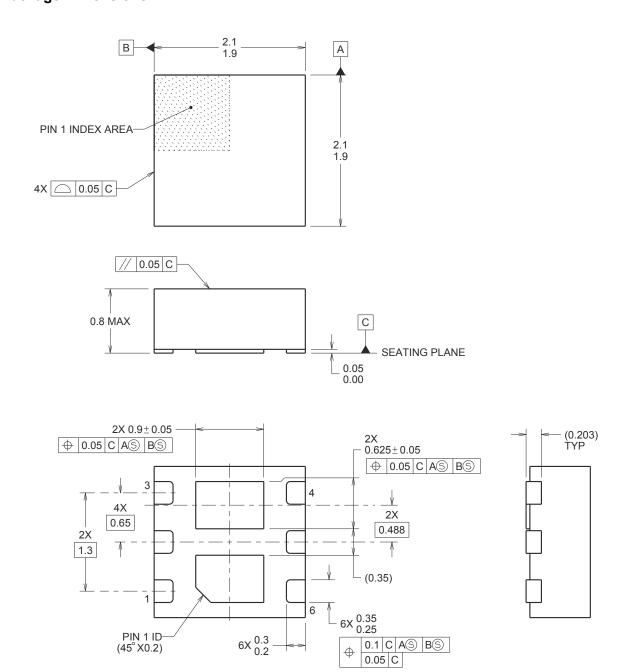
TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

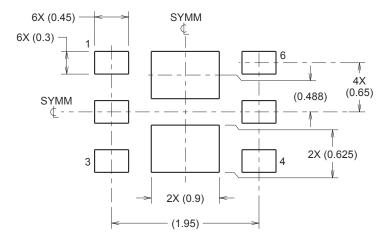
С	hanges from Revision * (December 2014) to Revision A (May 2024)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1


Submit Document Feedback

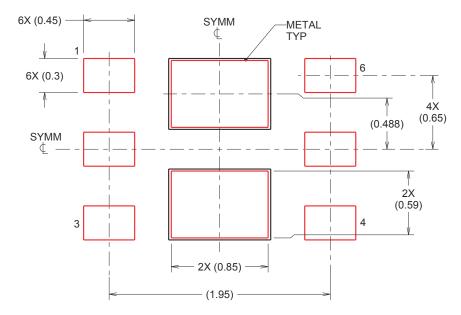
Copyright © 2024 Texas Instruments Incorporated

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

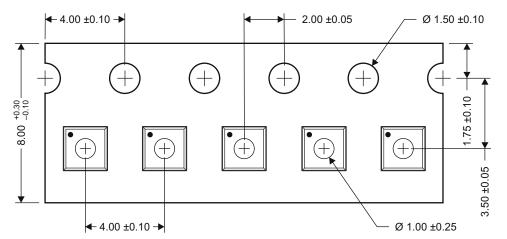

7.1 Package Dimensions

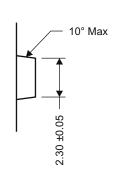
All dimensions are in mm, unless otherwise stated.

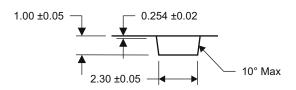


7.2 PCB Land Pattern

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.


7.3 Recommended Stencil Opening




All dimensions are in mm, unless otherwise stated.

7.4 Q2 Tape and Reel Information

M0168-01

- 1. Measured from centerline of sprocket hole to centerline of pocket
- 2. Cumulative tolerance of 10 sprocket holes is ±0.20
- 3. Other material available
- 4. Typical SR of form tape Max 109 OHM/SQ
- 5. All dimensions are in mm, unless otherwise specified.

www.ti.com 7-Oct-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CSD85301Q2	ACTIVE	WSON	DLV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8531	Samples
CSD85301Q2T	ACTIVE	WSON	DLV	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 150	8531	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

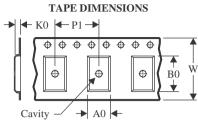
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

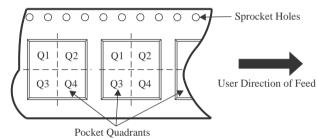
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

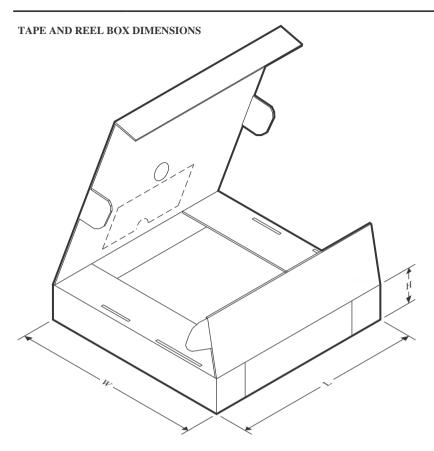

www.ti.com 7-Oct-2024

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Oct-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD85301Q2	WSON	DLV	6	3000	180.0	9.5	2.3	2.3	1.0	4.0	8.0	Q1
CSD85301Q2T	WSON	DLV	6	250	180.0	9.5	2.3	2.3	1.0	4.0	8.0	Q1

www.ti.com 7-Oct-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD85301Q2	WSON	DLV	6	3000	189.0	185.0	36.0
CSD85301Q2T	WSON	DLV	6	250	189.0	185.0	36.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated