
Application Brief
How to Debug Interrupt Abnormalities

Ryan Ma, Shaoxing Ke

Introduction

Supporting real-time tasks on a CPU requires the use of interrupts. If an external sensor senses a fault, the
CPU needs to be interrupted or halted to perform a subroutine that is able to handle the fault. In this example,
timing of the interrupt of when the signal reaches the CPU matters. Interrupts are hardware or software-driven
signals that cause the CPU to suspend the current program sequence and execute a subroutine. Interrupts often
handle time critical loops and control algorithms that are critical to the application and need to execute in timely
fashion. Most of the case interrupts can happen periodically with a known frequency. However, when designing
the software architecture, have you ever seen an interrupt waveform oscillate incorrectly, as shown in Figure 1?

Figure 1. Abnormal Interrupt Oscillation (Ch4: Interrupt with GPIO toggle; Ch3: Interrupt trigger on
ePWM ZRO event, Red signal: Frequency trend measurement from oscilloscope)

Interrupt Propagation Path and Interrupt Timing

First, there are two concepts to focus on with interrupt latency that are interrupt propagation path and interrupt
timing. The interrupt propagation path is the time from an interrupt request triggering to the beginning of the
interrupt service function. Second, confirm if there are any interference factors during an interrupt request
triggering or with normal interrupt execution. Third, interrupt latency is maintained to be executed normally by
setting interrupt priority reasonably (such as interrupt nesting and register stack restore/protect) and shielding
others interrupt interference source.

www.ti.com

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Interrupt propagation path on C28x handles interrupts in four main phases:

1. Receive the interrupt request. Suspension of the current program sequence must be requested by a
software interrupt (from program code) or a hardware interrupt (from a pin or an on-chip device), as
described in Figure 2.

2. Approve the interrupt. The C28x must approve the interrupt request. If the interrupt is maskable, certain
conditions must be met for the C28x to approve the interrupt request. For non-maskable hardware interrupts
and for software interrupts, approval is immediate, as described in Figure 3.

3. Prepare for the interrupt service routine and save register values, as described in Figure 4.
4. Execute the interrupt service routine. This is interrupt loop processing entry, call ISR.

Most programmers only pay attention to first two phases, and know less about stack protection or recovery and
interrupt response in the last two phases. This application brief dives deeper into phases three and four.

INPUTXBAR4

INPUTXBAR5

INPUTXBAR6

INPUTXBAR13

INPUTXBAR14

Input

X-BAR

GPIO0

to

GPIOx

XINT2 Control

XINT3 Control

XINT4 Control

XINT5 Control

XINT1 Control

TIMER0

Peripherals

See ePIE Table

LPM Logic

WD

ePIE

TINT0

LPMINT

WDINT
WAKEINT

TIMER1

NMI module

TIMER2

ERAD

CPU

NMI

RTOSINT

INT1

to

INT12

INT13

INT14

Figure 2. Interrupt Triggering Source (F28003x)

Figure 3 shows how peripheral interrupts propagate to the CPU.

Figure 3. Interrupt Propagation Path

www.ti.com

2 How to Debug Interrupt Abnormalities SPRADP8 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Figure 4 shows how C28x generates and responds to interrupt service functions.

Figure 4. Interrupt PIE Initialization Code Flow

The interrupt timing from interrupt request triggering to interrupt service function ISR:

1. Minimum latency (to when real work occurs in the ISR), 14 or 16 cycles: take F280039C 120Mhz CPU
for example, Minimum latency- add All Registers Save or Restored automatically On Real-Time interrupt
prepared can be 40 cycles, it can be around 50 cycles/415ns latency.

2. Maximum latency: Depends on C28x handles cycles for stack protection and restoration, wait states, INTM,
and not interruptible RPT Instruction, as described in Figure 5.

Figure 5. Interrupt Latency Flow

www.ti.com

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

In addition to correct usage of interrupt request and interrupt approval operation bits (Such as INTM, IER bit),
consider the following interference factors and interrupt nesting that can affect interrupts.

Interrupt Nesting and Interference Factors
• When C28x is executing an interrupt or responding to a high-priority interrupt, by default the interrupt cannot

continue to respond to other low-priority interrupts. However, there are steps that can be followed to enable
servicing of other interrupts within the current interrupt. This is called interrupt nesting.

• When uninterruptible instructions such as RPT instructions are being executed for too long or too frequently,
the C28x CPU cannot respond to the interrupts in a timely manner.

These two points are sources that can affect how the interrupt timing can be affected.

Interrupt Nesting

When talking about interrupt nesting, interrupts are automatically prioritized by the C28x hardware. Prioritization
for all interrupts can be found in the System Control guide specific to the particular device family. When the
C28x CPU is responding to a low-priority interrupt, the CPU interferes with the normal response of a high-priority
interrupt, as described in Figure 6.

Figure 6. Interrupt PIE Channel Mapping

Therefore, application code needs to add simple software prioritization during low priority interrupts. This allows
the CPU to respond to high-priority interrupt processing in a timely manner from the execution of low-priority
interrupts. Here are the steps C28x performs interrupt nesting:

1. Set the global priority:
a. Modify the IER register to allow CPU interrupts with a higher user priority to be serviced. (Note: at this

time IER has already been saved on the stack.)
2. Set the group priority:

a. Modify the appropriate PIEIERx register to allow group interrupts with a higher user set priority to be
serviced. (Note: Do NOT clear PIEIER register bits from another group other than that being serviced by
this ISR. Doing so can cause erroneous interrupts to occur.)

3. Enable interrupts: There are three steps to do this:
a. Clear the PIEACK bits.
b. Wait at least one cycle.
c. Clear the INTM bit. Use the assembly statement asm(” CLRC INTM”); or TI examples use #define EINT

asm(” CLRC INTM”).
4. Run the main part of the ISR.
5. Set INTM to disable interrupts. Use asm(” SETC INTM”); or TI examples use #define DINT asm(” SETC

INTM”).
6. Restore PIEIERx (optional depending on step 2)

www.ti.com

4 How to Debug Interrupt Abnormalities SPRADP8 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

7. Return from ISR:
a. This restores INTM and IER automatically. Meanwhile, the example code as below:

// // C28x ISR Code // // Enable nested interrupts // // ADCA1 interrupt for loop Interrput
void INT_myCPUTIMER2_ISR(void)
{
 uint16_t TempPIEIER;
 TempPIEIER = PieCtrlRegs.PIEIER1.all; // Save PIEIER register for later
 IER |= 0x001; // Set global priority by adjusting IER
 IER &= 0x001;
 PieCtrlRegs.PIEIER1.all &= 0x0001; // Set group priority by adjusting PIEIER1
to //allow INT1.1 to interrupt current CPU time0 ISR
 PieCtrlRegs.PIEACK.all = 0xFFFF; // Enable PIE interrupts
 asm(" NOP"); // Wait one cycle
 EINT; // Clear INTM to enable interrupts
 //
 // Insert ISR Code here.......
 // for now just insert a delay
 //
 //for(i = 1; i <= 10; i++) {}
 //
 // Restore registers saved:
 //
 DINT;
 PieCtrlRegs.PIEIER1.all = TempPIEIER;
}

Our next-generation C29x architecture F29H85x supports Hardware Interrupt Prioritization requires no software
overhead and allows interrupt nesting. For C29x architecture all registers are save/restored automatically by
hardware on real-time interrupt in 10 cycles when compared C28x 40 cycles.

www.ti.com

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

PRI_LEVEL 0

PRI_LEVEL 1

PRI_LEVEL 2

PRI_LEVEL 3

PRI_LEVEL 4

PRI_LEVEL 5

PRI_LEVEL 6

PRI_LEVEL 7

Group size 1

(default, all can nest)

PRI_LEVEL 0

PRI_LEVEL 1

PRI_LEVEL 2

PRI_LEVEL 3

PRI_LEVEL 4

PRI_LEVEL 5

PRI_LEVEL 6

PRI_LEVEL 7

Group size 2

(can nest in other groups)

PRI_LEVEL 0

PRI_LEVEL 1

PRI_LEVEL 2

PRI_LEVEL 3

PRI_LEVEL 4

PRI_LEVEL 5

PRI_LEVEL 6

PRI_LEVEL 7

Group size 4

(can nest in other groups)

PRI_LEVEL 0

PRI_LEVEL 1

PRI_LEVEL 2

PRI_LEVEL 3

PRI_LEVEL 4

PRI_LEVEL 5

PRI_LEVEL 6

PRI_LEVEL 7

Group size maximum

(none can nest)

nest

nest nest

nest

nest

nest

nest

nest

nest

nest

nest

nest

nest

nest

Figure 7. C29x Interrupt Grouping Overview

Nesting for INTs within the PIPE module is enabled within an Interrupt Service Routine (ISR) by setting the CPU
level DSTS.INTE bit active because this bit is disabled while entering the ISR., as described in Figure 7. Here
are the steps C28x performs interrupt nesting:

// // C29x ISR Code // // Enable nested interrupts // // ADCA1 interrupt for loop Interrput
void INT_myCPUTIMER0_ISR(void)
{
 // Set INTE to 1 to enable interrupts here.
 ENINT;
 // Insert ISR Code here.......

}

www.ti.com

6 How to Debug Interrupt Abnormalities SPRADP8 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

C28x Interrupt Nesting Test Results

The below test results are with two interrupts: EPWM interrupt at 150kHz (yellow signal) and Timer2 interrupt at
1kHz (blue signal). Timer2 interrupt has lower priority than the EPWM interrupt. Without C28x interrupt nesting
enabled, the interrupt frequency of the EPWM is not be 150kHz, as shown in Figure 8. Keeping EPWM interrupt
fixed at 150Khz is only possible by leveraging C28x CPU interrupt nesting, as shown in Figure 9. The test results
are based on LAUNCHXL-F280039C. If interrupt nesting is not enabled by software method as described with
the above code there is abnormal interrupt behavior.

With interrupt nesting enabled, the higher priority interrupts can still be entered and executed even when a lower
priority interrupt has occurred. This makes sure higher priority interrupt frequencies are constant..

Figure 8. C28x Interrupt Nesting Disabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

www.ti.com

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Figure 9. C28x Interrupt Nesting Enabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

C29x Interrupt Nesting Test Results

The below test results are with two interrupts: EPWM interrupt at 150kHz (pink signal) and Timer2 interrupt
at 1kHz (green signal). Timer2 interrupt has lower priority than the EPWM interrupt. Without C29x interrupt
nesting enabled, the interrupt frequency of the EPWM is not be 150kHz, as shown in Figure 10. Keeping EPWM
interrupt fixed at 150Khz is only possible by leveraging C29x CPU interrupt nesting, as shown in Figure 11. This
is tested based on the F29x devices. If interrupt nesting is not enabled by software method as described the
above code there is abnormal interrupt behavior.

With interrupt nesting enabled, the higher priority interrupts can still be entered and executed even when a lower
priority interrupt has occurred. This makes sure higher priority interrupt frequencies are constant.

www.ti.com

8 How to Debug Interrupt Abnormalities SPRADP8 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Figure 10. C29x Interrupt Nesting Disabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

Figure 11. C29x Interrupt Nesting Enabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

www.ti.com

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Uninterruptible Instructions Affects Interrupt Timing

When talking about uninterruptible instructions RPT, a large number of repeated global initialization variables are
used in the main program or state machine such as Memcopy, for loop assigns the same array, or repeated
operations are performed, the C2000 compiler automatically generates RPT instructions. The repeat (RPT)
instruction allows the execution of a single instruction (N + 1) times, where N is specified as an operand of the
RPT instruction. The instruction is executed once and then repeated N times. When RPT is executed, the repeat
counter (RPTC) is loaded with N. RPTC is then decremented every time the repeated instruction is executed,
until RPTC equals 0. For a description of RPT and a list of repeatable instructions, see the RPT *8bit/loc16
section in the C28x Assembly Language Instructions chapter of the TMS320C28x CPU and Instruction Set
Reference Guide.

Due to this RPT instruction being uninterruptible, it does not have the context saving stack protection or restore
function. So, the PC pointer stays in RPT at this time and it may not be able to respond to the interrupt request in
time, as described in Figure 12.

Figure 12. RPT Instructions Introduction

www.ti.com

10 How to Debug Interrupt Abnormalities SPRADP8 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRU430
https://www.ti.com/lit/pdf/SPRU430
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Therefore, you can go into the C2000 compilers using the correct settings or you can avoid generated C usage
notes. Regarding the C2000 compilers, you can change the Project Properties -> C2000 Compiler -> Advanced
Options -> Runtime Model Options -> Enable “Don’t generate RPT instructions, as described in Figure 13.

Figure 13. C2000 Compiler Setting About RPT Instructions

Figure 14. RPT Instructions Generated By Above Functions

www.ti.com

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Figure 15. Source Code

Finally, follow the above C2000 compilers settings and the EPWM ISR works normally, as described in Figure
16.

Figure 16. Abnormal Interrupt Oscillation Fixed (Ch4: Interrupt with GPIO toggle; Ch3: Interrupt trigger
on ePWM ZRO event, Red signal: Frequency trend measurement from oscilloscope)

www.ti.com

12 How to Debug Interrupt Abnormalities SPRADP8 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

Summary

The interrupt is executed normally by observing the minimum interrupt delay. However, the factors that affect the
normal execution of the interrupt are:

• Whether the interrupt request is triggered normally
• Whether the INTM or IER enable bit is enabled, and whether the IFG flag is set normally
• Whether the interrupt propagation path is likely to be blocked
• Whether the interrupt response is likely to be disturbed when saving the register, such as the non-interruptible

instruction RPT
• Whether the interrupt is nested, when the low-priority interrupt is responding, the high-priority interrupt is

blocked, affecting the timeliness of the interrupt response

This technical article tells you how to locate and troubleshoot the factors affecting the interrupts.

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Trademarks

SPRADP8 – FEBRUARY 2025
Submit Document Feedback

How to Debug Interrupt Abnormalities 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Trademarks

