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ABSTRACT

This application note focuses on the implementation of basic function of LIN using MSPM0. Specifically, how 
MSPM0 works with LIN driver to implement protocol layer and physical layer functions is going to be presented, 
which can help develop the software project quickly. Also note the MSPM0 software level only supports simple 
LIN communication.
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1 Introduction
LIN (Local Interconnect Network) bus is a low-cost serial communication protocol based on UART/SCI 
(Universal Asynchronous Receiver-Transmitter/Serial Communication Interface). Due to the low cost, it is widely 
used in Auto area as the subline of CAN. As shown in Figure 1-1, LIN communication follows a single 
commander and multiple responders, and the MCU uses the UART interface combined with LIN transceiver 
to communicate between nodes.
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Figure 1-1. LIN Network

Similar to most network protocols, LIN is defined as a multi-layered system officially, which varying from the 
physical interface to the application, as shown in Figure 1-2. The node application layer transmits signals 
and messages to the lower layer, and encapsulates them into a frame format through the protocol layer, and 
transmits them to other nodes through the LIN bus.
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Figure 1-2. Composition of the LIN Node

This application note focuses on the implementation of basic functions of LIN using MSPM0. Specifically, how 
MSPM0 works with LIN driver to implement protocol layer and physical layer functions is presented, which can 
help develop the software project quickly.
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2 How MSPM0 Support LIN Function
2.1 Clock
The LIN specification regulates the clock accuracy of the commander-responder node, which is reflected in the 
bit rate specification, as shown in Table 2-1.

Table 2-1. LIN Bit Rate Request 
Bit Rate Tolerance Name ΔF / FNom 1

Commander node (deviation from nominal bit rate) FTOL_RES_MASTER <±0.5%

Responder node without making use of synchronization (deviation from nominal bit rate) FTOL_RES_SLAVE <±1.5%

Deviation of responder node bit rate from the nominal bit rate before synchronization; 
relevant for nodes making use of synchronization and direct break detection.

Ftol_unsync ±14%

Deviation of responder node bit rate relative to the commander node bit rate after 
synchronization

FTOL_SYNC <±2%

For communication between any two nodes (for example, data stream from one responder 
to another responder), the bit rate must not differ by more than FTOL_SL_to_SL

FTOL_SL_to_SL <±2%

(1) The specific bit rate used on a LIN bus is defined as the nominal bit rate FNom

Table 2-2 shows the clock specs of MSPM0.

Table 2-2. Clock Specs of MSPM0(T=25℃)
Series Clock Support External Crystal Oscillators

MSPM0G Internal 4 - 32MHz oscillator with up to 0.7% accuracy (SYSOSC)1 External 4 - 48MHz crystal oscillator(HFXT)

Internal 32kHz low-frequency oscillator (LFOSC) with ±3% accuracy External 32kHz crystal oscillator(LFXT)

MSPM0L Internal 4 - 32MHz oscillator with ±0.7% accuracy (SYSOSC)
Not support

Internal 32kHz low-frequency oscillator with ±3% accuracy (LFOSC)

MSPM0C Internal 24MHz oscillator with up to ±1% accuracy (SYSOSC)
Support(only support for 20pins)

Internal 32kHz low-frequency oscillator (LFOSC) with ±3% accuracy

(1) MSPM0G series support PLL up to 80MHz

2.2 LIN Hardware
For supporting local interconnect network (LIN) protocol, the following hardware enhancements are implemented 
in the UART0 module:

• 16 bit up-counter (LINCNT) clocked by the UART clock.
• Interrupt capability on counter overflow (CPU_INT.IMASK.LINOVF).
• 16 bit capture register (LINC0) with two configurable modes

– Capture of LINCNT value on RXD falling edge. Interrupt capability on capture.
– Compare of LINCNT with interrupt capability on match.

• 16 bit capture register (LINC1) can be configured
– Capture LINCNT value on RXD rising edge. Interrupt capability on capture.

Besides, MSPM0 also has large register to support LIN communication. For example, when served as 
commander, there is a LCRH.BRK register to enable UART.TXD to send continually low level. And for responder, 
LINCNT register can help get the time of the break field. For more detailed information, see MSPM0 G-Series 
80MHz Microcontrollers, technical reference manual.

2.3 LIN Demo Code in SDK
To help develop LIN communication fast and conveniently, TI has provided demo codes of responder and 
commander in SDK. You can download MSPM0 all code example from MSPM0-SDK Software Development 
Kit. This demo code is configure UART as LIN commander or responder, and demonstrates basic transmit and 
receive of LIN 2.0 packets using enhanced checksum. Some key feature:
• Baud rate: 19200bps
• Choose interrupt or polling mode through predefined Symbols while transmitting data
• Timeout function while receiving data
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2.3.1 LIN Commander

The main function of LIN commander demo code is to send different command in LIN protocol frame. As the two 
bottoms are pressed, PID 0x39 and 0x08 are sent desperately. One is to light LED of responder and the other 
one is to receive data from responder.

Figure 2-1 shows the flow process of LIN commander demo code.
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Figure 2-1. Flow Process of LIN Commander Demo Code

To initialize the hardware, TI System Configuration Tool (SysConfig) is used to generate configuration code of 
UART, such as UART clock, pin configuration and so on. In this demo code, we choose 19200 Baud Rate, 
following the LIN specs regulation.
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Table 2-3 shows a summary for the LIN commander project, which includes the main used definitions and 
functions.

Table 2-3. LIN Commander Project Main Content
Name Task Description Location
LIN_TABLE_INDEX_PID_xx definition The PID of each frame lin_command.c

LIN_MESSAGE_NOT_FOUND definition 0xFF. UART LIN value for the 
message not found

lin_config.h

LIN_SYNC_BYTE definition 0x55. UART LIN value for the sync 
byte

lin_config.h

LIN_BREAK_LENGTH definition 0x08. UART LIN break length to 1ms lin_config.h

SYSCFG_DL_init() function Initialize the peripherals, generated by 
Sysconfig

ti_msp_dl_config.c

DL_UART_enableLINSendBreak(UART_Regs 
*uart)

function Enable send break. when enabled, 
a low level is continually output 

on the TXD signal after completing 
transmission of the current character

dl_uart.c

DL_UART_disableLINSendBreak(UART_Regs 
*uart)

function Disable send break dl_uart.c

LIN_Commander_transmitMessage(UART_Regs 
*uart, uint8_t tableIndex, uint8_t *buffer, 
LIN_table_record_t *messageTable)

function LIN transmits message lin_config.c

LIN_processMessage_Rx() function Process as message received Lin_commander.c

2.3.2 LIN Responder

The main function of LIN commander demo code is to receive command from commander and execute the 
corresponding instructions. In this demo code, responder does not clock sync up but uses self-clock and only 
checks whether the sync byte is correct. Also, there is no timeout error detection.

Figure 2-2 shows the flow process of LIN responder demo code.
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Figure 2-2. LIN Responder Demo Code Flow Process

In this demo code, a state machine is used to help receive command and give response, as shown in Figure 2-3. 
When an interrupt occurs, there are state flags to decide what is the next non-executed state and jump into.
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Figure 2-3. LIN Responder Demo Code State Machine

In this demo code, LIN hardware is initialized through Sysconfig. Besides pin configuration, interrupt and basic 
register needs to be set. LIN counter is used to detect and verify the break field. Also, Sync field is realized 
by the count and interrupt function of LINC0,LINC1. For detailed seeting, please refer to the .syscfg file in code 
example.

Table 2-4 is a summary for the LIN responder project, which includes the main used definitions and functions.

Table 2-4. LIN Responder Project Main Content 
Name Task Description Location

LIN_RESPONDER_SYNC_CYCLES definition 5. The number of cycles in a sync 
validation

lin_config.h

LIN_MESSAGE_NOT_FOUND definition 0xFF. UART LIN value for the 
message not found

lin_config.h

LIN_SYNC_BYTE definition 0x55. UART LIN value for the 
sync byte

lin_config.h

LIN_RESPONSE_LAPSE definition Number of delay cycles between 
PID STOP bit and data 
transmission START bit

lin_config.h

SYSCFG_DL_init() function Initialize the peripherals, 
generated by Sysconfig

ti_msp_dl_config.c

DL_UART_Extend_getLINCounterValue(UART_Regs *uart) function Get the LIN counter value dl_uart.c

DL_UART_Extend_getLINRisingEdgeCaptureValue(UART_
Regs *uart)

function Get the LINC1 counter value dl_uart.c

DL_UART_Extend_getLINFallingEdgeCaptureValue(UART_
Regs *uart)

function Get the LINC0 counter value dl_uart.c

DL_UART_Extend_receiveData(UART_Regs *uart) function Reads data from the RX FIFO dl_uart.c

setLINResponderRXMessage(UART_Regs *uart, uint8_t 
data, volatile LIN_STATE *gStateMachine)

function LIN give corresponding action lin_responder.c
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3 LIN Communication Realization

3.1 Hardware Connection
LIN transceiver is needed to cooperate with MCU, as the LIN transceiver can transform UART signal to LIN 
signal.

Here we take LP-MSPM0G3057 and TLIN2029EVM for example. The hardware connection is shown as Figure 
3-1. The two of the connections form a communication unit, and can be connected to another unit like MCU with 
transceiver, LIN Analysis to PC.

1. Connect MSPM0G3507 UART pin to TLIN2029.
2. Connect MSPM0G3507 Power pin(3.3V and GND) to TLIN2029.
3. Connect MSPM0G3507 PB15 which served as enable pin to TLIN2029 ENABLE pin.
4. Use external 12V power supply to TLIN VBAT pin. If the other connected communication unit like LIN 

Analysis has already connect 12V, then this step can be ignored.
5. Connect VBAT,LIN and GND pin in TLIN2029 to responder or commander hardware.
6. Power supply MCU.

Figure 3-1. Hardware Connection Between MSPM0 and LIN Transceiver

3.2 Test Results
Next, test MSPM0 as commander and responder respectively, and CAN&LIN Analyzer can be used to 
communicate with MSPM0 through LIN.

3.2.1 Commander

In this case, MCU serves as commander, and PC with CAN/LIN analysis serves as responder. Baud rate is 
19200.

When selecting the Button1 to make MCU send 0x39(PID), the results are shown in Figure 3-2. As shown from 
Figure 3-2, the host computer can successfully receive the data sent by the MCU, which can also be confirmed 
from the waveform diagram (Figure 3-3).

Figure 3-2. MCU as Commander Transmitting Data Results
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Figure 3-3. MCU as Commander Transmitting Data Waveform

When press the button2 to make MCU send 0x08(PID), the responder can send data to MCU. As shown from 
Figure 3-4, the responder transmit 0x11,0x22,0x33 and 0x44 and MCU succeeds to receive this data. But in this 
case, the check mode in PC is normal, so the checksum can not match the MCU and then the callback function 
can not work. However, the receive data can still be stored in the array.

Figure 3-4. MCU as Commander Receiving Data Results
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Figure 3-5. MCU as Commander Receiving Data Waveform

Figure 3-6. gCommanderRXBuffer Results

3.2.2 Responder

In this case, MSPM0 serves as responder. The demo code realizes the function that if received 0x39/0xBA/
0xFB, MCU can receive data from commander. And if received 0x08/0x49/0x0D PID, MCU can transmit data to 
the commander.

When commander send 0x3B(PID is 0xFB), the MCU is going to receive data from host. As shown in Figure 3-7, 
Figure 3-8, and Figure 3-9, the host computer successfully transmit the data which can be read from MCU RAM 
in debug mode.

Figure 3-7. MCU as Responder Receiving Data Results
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Figure 3-8. MCU as Responder Receiving Data Waveform

Figure 3-9. gResponderRXBuffer Results

When commander send 0x08, the result is shown in Figure 3-10 and Figure 3-11. The host is set to read mode, 
and select Enhanced check mode. Then, the communication is successful, and the host computer successfully 
receives the data sent by the MCU, which can be confirmed through waveform. Finally the GPIO is toggled to 
show the end of communication.

Figure 3-10. MCU as Responder Transmitting Data Results
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Figure 3-11. MCU as Responder Transmitting Data Waveform

4 Summary
In this document, a brief introduction to the LIN basic knowledge is covered and how MSPM0 support LIN 
communication with hardware and software. The document also provides a preliminary understanding of 
MSPM0 and LIN, and can help speed up the development progress.

5 References
• Texas Instruments, MSPM0 C-series 24-MHz Microcontrollers, technical reference manual.
• Texas Instruments, MSPM0 L-series 24-MHz Microcontrollers, technical reference manual.
• Texas Instruments, MSPM0 G-series 24-MHz Microcontrollers, technical reference manual.
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