
Application Note
LIN Basics and Implementation on MSPM0

Zoey Wei

ABSTRACT

This application note focuses on the implementation of basic function of LIN using MSPM0. Specifically, how
MSPM0 works with LIN driver to implement protocol layer and physical layer functions is going to be presented,
which can help develop the software project quickly. Also note the MSPM0 software level only supports simple
LIN communication.

Table of Contents
1 Introduction...2
2 How MSPM0 Support LIN Function...3

2.1 Clock.. 3
2.2 LIN Hardware... 3
2.3 LIN Demo Code in SDK... 3

3 LIN Communication Realization..8
3.1 Hardware Connection.. 8
3.2 Test Results..8

4 Summary... 12
5 References.. 12

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

LIN Basics and Implementation on MSPM0 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

1 Introduction
LIN (Local Interconnect Network) bus is a low-cost serial communication protocol based on UART/SCI
(Universal Asynchronous Receiver-Transmitter/Serial Communication Interface). Due to the low cost, it is widely
used in Auto area as the subline of CAN. As shown in Figure 1-1, LIN communication follows a single
commander and multiple responders, and the MCU uses the UART interface combined with LIN transceiver
to communicate between nodes.

Master

MCU

UART

Transceiver

Slave

MCU

UART

Transceiver

Slave

MCU

UART

Transceiver

LIN Bus

. . .

Figure 1-1. LIN Network

Similar to most network protocols, LIN is defined as a multi-layered system officially, which varying from the
physical interface to the application, as shown in Figure 1-2. The node application layer transmits signals
and messages to the lower layer, and encapsulates them into a frame format through the protocol layer, and
transmits them to other nodes through the LIN bus.

Application

TL Signal Interaction

Frame Handler

Frame Handler

API

Protocol

Physical

Figure 1-2. Composition of the LIN Node

This application note focuses on the implementation of basic functions of LIN using MSPM0. Specifically, how
MSPM0 works with LIN driver to implement protocol layer and physical layer functions is presented, which can
help develop the software project quickly.

Introduction www.ti.com

2 LIN Basics and Implementation on MSPM0 SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

2 How MSPM0 Support LIN Function
2.1 Clock
The LIN specification regulates the clock accuracy of the commander-responder node, which is reflected in the
bit rate specification, as shown in Table 2-1.

Table 2-1. LIN Bit Rate Request
Bit Rate Tolerance Name ΔF / FNom 1

Commander node (deviation from nominal bit rate) FTOL_RES_MASTER <±0.5%

Responder node without making use of synchronization (deviation from nominal bit rate) FTOL_RES_SLAVE <±1.5%

Deviation of responder node bit rate from the nominal bit rate before synchronization;
relevant for nodes making use of synchronization and direct break detection.

Ftol_unsync ±14%

Deviation of responder node bit rate relative to the commander node bit rate after
synchronization

FTOL_SYNC <±2%

For communication between any two nodes (for example, data stream from one responder
to another responder), the bit rate must not differ by more than FTOL_SL_to_SL

FTOL_SL_to_SL <±2%

(1) The specific bit rate used on a LIN bus is defined as the nominal bit rate FNom

Table 2-2 shows the clock specs of MSPM0.

Table 2-2. Clock Specs of MSPM0(T=25℃)
Series Clock Support External Crystal Oscillators

MSPM0G Internal 4 - 32MHz oscillator with up to 0.7% accuracy (SYSOSC)1 External 4 - 48MHz crystal oscillator(HFXT)

Internal 32kHz low-frequency oscillator (LFOSC) with ±3% accuracy External 32kHz crystal oscillator(LFXT)

MSPM0L Internal 4 - 32MHz oscillator with ±0.7% accuracy (SYSOSC)
Not support

Internal 32kHz low-frequency oscillator with ±3% accuracy (LFOSC)

MSPM0C Internal 24MHz oscillator with up to ±1% accuracy (SYSOSC)
Support(only support for 20pins)

Internal 32kHz low-frequency oscillator (LFOSC) with ±3% accuracy

(1) MSPM0G series support PLL up to 80MHz

2.2 LIN Hardware
For supporting local interconnect network (LIN) protocol, the following hardware enhancements are implemented
in the UART0 module:

• 16 bit up-counter (LINCNT) clocked by the UART clock.
• Interrupt capability on counter overflow (CPU_INT.IMASK.LINOVF).
• 16 bit capture register (LINC0) with two configurable modes

– Capture of LINCNT value on RXD falling edge. Interrupt capability on capture.
– Compare of LINCNT with interrupt capability on match.

• 16 bit capture register (LINC1) can be configured
– Capture LINCNT value on RXD rising edge. Interrupt capability on capture.

Besides, MSPM0 also has large register to support LIN communication. For example, when served as
commander, there is a LCRH.BRK register to enable UART.TXD to send continually low level. And for responder,
LINCNT register can help get the time of the break field. For more detailed information, see MSPM0 G-Series
80MHz Microcontrollers, technical reference manual.

2.3 LIN Demo Code in SDK
To help develop LIN communication fast and conveniently, TI has provided demo codes of responder and
commander in SDK. You can download MSPM0 all code example from MSPM0-SDK Software Development
Kit. This demo code is configure UART as LIN commander or responder, and demonstrates basic transmit and
receive of LIN 2.0 packets using enhanced checksum. Some key feature:
• Baud rate: 19200bps
• Choose interrupt or polling mode through predefined Symbols while transmitting data
• Timeout function while receiving data

www.ti.com How MSPM0 Support LIN Function

SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

LIN Basics and Implementation on MSPM0 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau846
https://www.ti.com/lit/pdf/slau846
https://dev.ti.com/tirex/explore/node?node=A__ABMi4qfefjxWthSfN.auxA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/MSPM0-SDK
https://www.ti.com/tool/MSPM0-SDK
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

2.3.1 LIN Commander

The main function of LIN commander demo code is to send different command in LIN protocol frame. As the two
bottoms are pressed, PID 0x39 and 0x08 are sent desperately. One is to light LED of responder and the other
one is to receive data from responder.

Figure 2-1 shows the flow process of LIN commander demo code.

enable transceiver

enable LINSend

Break

LIN commander start

wait for ~ 1ms

disenable

LINSend Break

wait for ~ 1ms

clear RX buffer and

pending RX interrupt

send Sync field

send PID

send or read?

Enable interrupt

Receive data

Receive data

send Break field

send header

No

send
send data

send checksum

LIN commander end

send/receive respond

read

Figure 2-1. Flow Process of LIN Commander Demo Code

To initialize the hardware, TI System Configuration Tool (SysConfig) is used to generate configuration code of
UART, such as UART clock, pin configuration and so on. In this demo code, we choose 19200 Baud Rate,
following the LIN specs regulation.

How MSPM0 Support LIN Function www.ti.com

4 LIN Basics and Implementation on MSPM0 SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

Table 2-3 shows a summary for the LIN commander project, which includes the main used definitions and
functions.

Table 2-3. LIN Commander Project Main Content
Name Task Description Location
LIN_TABLE_INDEX_PID_xx definition The PID of each frame lin_command.c

LIN_MESSAGE_NOT_FOUND definition 0xFF. UART LIN value for the
message not found

lin_config.h

LIN_SYNC_BYTE definition 0x55. UART LIN value for the sync
byte

lin_config.h

LIN_BREAK_LENGTH definition 0x08. UART LIN break length to 1ms lin_config.h

SYSCFG_DL_init() function Initialize the peripherals, generated by
Sysconfig

ti_msp_dl_config.c

DL_UART_enableLINSendBreak(UART_Regs
*uart)

function Enable send break. when enabled,
a low level is continually output

on the TXD signal after completing
transmission of the current character

dl_uart.c

DL_UART_disableLINSendBreak(UART_Regs
*uart)

function Disable send break dl_uart.c

LIN_Commander_transmitMessage(UART_Regs
*uart, uint8_t tableIndex, uint8_t *buffer,
LIN_table_record_t *messageTable)

function LIN transmits message lin_config.c

LIN_processMessage_Rx() function Process as message received Lin_commander.c

2.3.2 LIN Responder

The main function of LIN commander demo code is to receive command from commander and execute the
corresponding instructions. In this demo code, responder does not clock sync up but uses self-clock and only
checks whether the sync byte is correct. Also, there is no timeout error detection.

Figure 2-2 shows the flow process of LIN responder demo code.

www.ti.com How MSPM0 Support LIN Function

SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

LIN Basics and Implementation on MSPM0 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

enable transceiver

detect LIN break field

LIN responder start

receive PID and check

send header

send data

send checksum

LIN commander end

check the length of

break field

check the sync field

segment

detect LIN break field

send or read?

receive data

receive header

right

right

wrong

send

right

wrong

Figure 2-2. LIN Responder Demo Code Flow Process

In this demo code, a state machine is used to help receive command and give response, as shown in Figure 2-3.
When an interrupt occurs, there are state flags to decide what is the next non-executed state and jump into.

How MSPM0 Support LIN Function www.ti.com

6 LIN Basics and Implementation on MSPM0 SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

LIN_STATE_PID_FIELD
receive 0x55

LIN_STATE_SYNC_FIELD_POS_EDGE

LIN_STATE_SYNC_FIELD_NEG_EDGE

LIN_STATE_BREAK_FIELD

Receive

unexpected byte

LIN_STATE_WAIT_FOR_BREAK

not receive break field

LINC0 falling edge

LIN_STATE_DATA_FIELD

receive data

receive data command
Falling edge Rising edge

Receive break field

Start

Receive unexpected PID

Send data command

Figure 2-3. LIN Responder Demo Code State Machine

In this demo code, LIN hardware is initialized through Sysconfig. Besides pin configuration, interrupt and basic
register needs to be set. LIN counter is used to detect and verify the break field. Also, Sync field is realized
by the count and interrupt function of LINC0,LINC1. For detailed seeting, please refer to the .syscfg file in code
example.

Table 2-4 is a summary for the LIN responder project, which includes the main used definitions and functions.

Table 2-4. LIN Responder Project Main Content
Name Task Description Location

LIN_RESPONDER_SYNC_CYCLES definition 5. The number of cycles in a sync
validation

lin_config.h

LIN_MESSAGE_NOT_FOUND definition 0xFF. UART LIN value for the
message not found

lin_config.h

LIN_SYNC_BYTE definition 0x55. UART LIN value for the
sync byte

lin_config.h

LIN_RESPONSE_LAPSE definition Number of delay cycles between
PID STOP bit and data
transmission START bit

lin_config.h

SYSCFG_DL_init() function Initialize the peripherals,
generated by Sysconfig

ti_msp_dl_config.c

DL_UART_Extend_getLINCounterValue(UART_Regs *uart) function Get the LIN counter value dl_uart.c

DL_UART_Extend_getLINRisingEdgeCaptureValue(UART_
Regs *uart)

function Get the LINC1 counter value dl_uart.c

DL_UART_Extend_getLINFallingEdgeCaptureValue(UART_
Regs *uart)

function Get the LINC0 counter value dl_uart.c

DL_UART_Extend_receiveData(UART_Regs *uart) function Reads data from the RX FIFO dl_uart.c

setLINResponderRXMessage(UART_Regs *uart, uint8_t
data, volatile LIN_STATE *gStateMachine)

function LIN give corresponding action lin_responder.c

www.ti.com How MSPM0 Support LIN Function

SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

LIN Basics and Implementation on MSPM0 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

3 LIN Communication Realization

3.1 Hardware Connection
LIN transceiver is needed to cooperate with MCU, as the LIN transceiver can transform UART signal to LIN
signal.

Here we take LP-MSPM0G3057 and TLIN2029EVM for example. The hardware connection is shown as Figure
3-1. The two of the connections form a communication unit, and can be connected to another unit like MCU with
transceiver, LIN Analysis to PC.

1. Connect MSPM0G3507 UART pin to TLIN2029.
2. Connect MSPM0G3507 Power pin(3.3V and GND) to TLIN2029.
3. Connect MSPM0G3507 PB15 which served as enable pin to TLIN2029 ENABLE pin.
4. Use external 12V power supply to TLIN VBAT pin. If the other connected communication unit like LIN

Analysis has already connect 12V, then this step can be ignored.
5. Connect VBAT,LIN and GND pin in TLIN2029 to responder or commander hardware.
6. Power supply MCU.

Figure 3-1. Hardware Connection Between MSPM0 and LIN Transceiver

3.2 Test Results
Next, test MSPM0 as commander and responder respectively, and CAN&LIN Analyzer can be used to
communicate with MSPM0 through LIN.

3.2.1 Commander

In this case, MCU serves as commander, and PC with CAN/LIN analysis serves as responder. Baud rate is
19200.

When selecting the Button1 to make MCU send 0x39(PID), the results are shown in Figure 3-2. As shown from
Figure 3-2, the host computer can successfully receive the data sent by the MCU, which can also be confirmed
from the waveform diagram (Figure 3-3).

Figure 3-2. MCU as Commander Transmitting Data Results

LIN Communication Realization www.ti.com

8 LIN Basics and Implementation on MSPM0 SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

Figure 3-3. MCU as Commander Transmitting Data Waveform

When press the button2 to make MCU send 0x08(PID), the responder can send data to MCU. As shown from
Figure 3-4, the responder transmit 0x11,0x22,0x33 and 0x44 and MCU succeeds to receive this data. But in this
case, the check mode in PC is normal, so the checksum can not match the MCU and then the callback function
can not work. However, the receive data can still be stored in the array.

Figure 3-4. MCU as Commander Receiving Data Results

www.ti.com LIN Communication Realization

SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

LIN Basics and Implementation on MSPM0 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

Figure 3-5. MCU as Commander Receiving Data Waveform

Figure 3-6. gCommanderRXBuffer Results

3.2.2 Responder

In this case, MSPM0 serves as responder. The demo code realizes the function that if received 0x39/0xBA/
0xFB, MCU can receive data from commander. And if received 0x08/0x49/0x0D PID, MCU can transmit data to
the commander.

When commander send 0x3B(PID is 0xFB), the MCU is going to receive data from host. As shown in Figure 3-7,
Figure 3-8, and Figure 3-9, the host computer successfully transmit the data which can be read from MCU RAM
in debug mode.

Figure 3-7. MCU as Responder Receiving Data Results

LIN Communication Realization www.ti.com

10 LIN Basics and Implementation on MSPM0 SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

Figure 3-8. MCU as Responder Receiving Data Waveform

Figure 3-9. gResponderRXBuffer Results

When commander send 0x08, the result is shown in Figure 3-10 and Figure 3-11. The host is set to read mode,
and select Enhanced check mode. Then, the communication is successful, and the host computer successfully
receives the data sent by the MCU, which can be confirmed through waveform. Finally the GPIO is toggled to
show the end of communication.

Figure 3-10. MCU as Responder Transmitting Data Results

www.ti.com LIN Communication Realization

SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

LIN Basics and Implementation on MSPM0 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

Figure 3-11. MCU as Responder Transmitting Data Waveform

4 Summary
In this document, a brief introduction to the LIN basic knowledge is covered and how MSPM0 support LIN
communication with hardware and software. The document also provides a preliminary understanding of
MSPM0 and LIN, and can help speed up the development progress.

5 References
• Texas Instruments, MSPM0 C-series 24-MHz Microcontrollers, technical reference manual.
• Texas Instruments, MSPM0 L-series 24-MHz Microcontrollers, technical reference manual.
• Texas Instruments, MSPM0 G-series 24-MHz Microcontrollers, technical reference manual.

Summary www.ti.com

12 LIN Basics and Implementation on MSPM0 SLAAEK9 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau893
https://www.ti.com/lit/pdf/slau847
https://www.ti.com/lit/pdf/slau846
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEK9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEK9&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 How MSPM0 Support LIN Function
	2.1 Clock
	2.2 LIN Hardware
	2.3 LIN Demo Code in SDK
	2.3.1 LIN Commander
	2.3.2 LIN Responder

	3 LIN Communication Realization
	3.1 Hardware Connection
	3.2 Test Results
	3.2.1 Commander
	3.2.2 Responder

	4 Summary
	5 References

