LM1117-Q1 18V、1A、車載用固定出力リニア電圧レギュレータ ## 1 特長 - 車載アプリケーション用に AEC-Q100 認定済み: - 温度グレード 1:-40℃~+125℃、T_Δ - 接合部温度:-40°C~+150°C、T」 - 入力電圧範囲 (V_{IN}): 2.5V~18V (20V の絶対最大定 - 出力電圧範囲 (V_{OUT}): - 0.8V ~ 13.0V (固定、100mV 刻み) - 出力電流:最大 1A - 小さい静止電流 (Io): - 60μA (標準値、シャットダウン時には約 1.5μA) - ±1% の出力精度 - 高 PSRR: 1kHz で 60dB、1MHz で 40dB - 内部ソフトスタート時間:500µs (標準値) - フォールドバック電流制限および過熱保護 - 1uF のセラミック出力コンデンサで安定動作 - パッケージ: - 4ピン、6.5mm×7mm SOT-223 - 3ピン、6.6mm × 10.11mm TO-252 # 2 アプリケーション - オンボードチャージャ - トラクション インバータ - 2輪車と3輪車のトラクションドライブ 22μF の C_{OUT} を使用した場合のスタートアップおよ び突入電流 ## 3 概要 LM1117-Q1 は、より厳密な出力精度と、スタンバイ消費電 力を低減させる小さい静止電流 (I_O) によって従来の x1117 レギュレータより高い性能を実現する、車載アプリケ ーション向けの AEC-Q100 認定済みリニア電圧レギュレ ータです。 LM1117-Q1 の入力電圧範囲は 2.5V~18V であり、0.8V ~13V の出力電圧範囲を持っているため、幅広いアプリ ケーションに対応できます。 LM1117-Q1 の広帯域の PSRR 特性 (標準値) は、1kHz で 60dB、1MHz で 40dB を超え、上流の DC/DC コンバ ータのスイッチング周波数を減衰して、レギュレータ後のフ ィルタ処理を最小化できます。 さらに、LM1117-Q1 は、起動時の突入電流を減らすため に内部ソフトスタート機能を備えているため、入力容量を 最小化することで設計のスペースとコストを節約できます。 LM1117-Q1 は、過負荷電流フォルトまたは短絡発生時の デバイスの消費電力を制限するフォールドバック電流制限 機能を備えています。 #### パッケージ情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ サイズ ⁽²⁾ | |-----------|----------------------|--------------------------| | LM1117-Q1 | DCY (SOT-223, 4) | 6.5mm × 7mm | | | KVU (TO-252、3) | 6.6mm × 10.11mm | - 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 - パッケージ サイズ (長さ×幅) は公称値で、該当する場合はピンも 含まれます。 代表的なアプリケーション回路 # **Table of Contents** | 1 特長1 | |---------------------------------------| | 2 アプリケーション1 | | 3 概要1 | | 4 Pin Configuration and Functions3 | | 5 Specifications4 | | 5.1 Absolute Maximum Ratings4 | | 5.2 ESD Ratings4 | | 5.3 Recommended Operating Conditions4 | | 5.4 Thermal Information5 | | 5.5 Electrical Characteristics5 | | 5.6 Typical Characteristics6 | | 6 Detailed Description10 | | 6.1 Overview10 | | 6.2 Functional Block Diagram10 | | 6.3 Feature Description10 | | 6.4 Device Functional Modes12 | | 7 Application and Implementation | | 7.1 Application Information | 13 | |---|----| | 7.2 Typical Application | | | 7.3 Best Design Practices | | | 7.4 Power Supply Recommendations | | | 7.5 Layout | | | 8 Device and Documentation Support | | | 8.1 Device Support | 19 | | 8.2 Documentation Support | | | 8.3ドキュメントの更新通知を受け取る方法 | | | 8.4 サポート・リソース | 19 | | 8.5 Trademarks | | | 8.6 静電気放電に関する注意事項 | 19 | | 8.7 用語集 | 19 | | 9 Revision History | | | 10 Mechanical, Packaging, and Orderable | | | Information | 20 | | | | # 4 Pin Configuration and Functions 図 4-1. DCY Package, 4-Pin SOT-223 (Top View) 図 4-2. KVU Package, 3-Pin TO-252 (Top View) 表 4-1. Pin Functions | PIN | | | | DESCRIPTION | |------|--------|--------|----------|---| | NAME | DCY | KVU | FUNCTION | DESCRIPTION | | GND | 1 | 1 | _ | Ground pin | | ОИТ | 2, Tab | 2, Tab | 0 | Output pin. Use the recommended capacitor value as listed in the
Recommended Operating Conditions table. Place the output capacitor as
close to the OUT and GND pins of the device as possible. | | IN | 3 | 3 | I | Input pin. Use the recommended capacitor value as listed in the
Recommended Operating Conditions table. Place the input capacitor as
close to the IN and GND pins of the device as possible. | ## **5 Specifications** ## 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |-------------|--------------------------------------|--------------------------------|-----------------------|------| | Voltage (2) | V _{IN} | -0.3 | 20 | V | | Voltage | V _{OUT} (3) | -0.3 | V _{IN} + 0.3 | V | | Current | Maximum output current | Internally limited | | Α | | Power | Power dissipation | Package limited ⁽⁴⁾ | | W | | Temperature | Operating junction (T _j) | -50 | 150 | °C | | remperature | Storage (T _{stg}) | -65 | 150 | C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. - (2) All voltages with respect to GND. - (3) V_{IN} + 0.3V or 20V (whichever is smaller). - (4) See Thermal Information table for further details. ## 5.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|--------------------------------------------|-------------------------------------------------------------------|-----------------------|-------|------| | | | Human body model (HBM), per AEC Q100-002, all pins ⁽¹⁾ | | ±3000 | | | V _(ESD) | V _(ESD) Electrostatic discharge | AFO 0400 044 | Corner pins (1 and 3) | ±1000 | V | | | | | Other pins | ±1000 | | ⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ## **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | | |----------------------|----------------------------------------------|-----|-----|------|------|--| | V _{IN} | Input voltage | 2.5 | | 18 | V | | | V _{OUT} | Output voltage | 0.8 | | 13.0 | V | | | I _{OUT} | Output current (2.5V ≤ V _{IN} < 3V) | 0 | | 0.8 | ۸ | | | I _{OUT} | Output current (V _{IN} ≥ 3V) | 0 | | 1 | Α | | | C _{OUT} ESR | Output capacitor ESR | 2 | | 500 | mΩ | | | C _{OUT} | Output capacitor ⁽¹⁾ | 1 | 2.2 | 220 | | | | C _{IN} | Input capacitor ⁽²⁾ | | 1 | | μF | | | TJ | Junction temperature | -40 | | 150 | °C | | - (1) Effective output capacitance of 0.47µF minimum required for stability. - (2) An input capacitor is not required for LDO stability. However, an input capacitor with an effective value of 0.47µF minimum is recommended to counteract the effect of source resistance and inductance, which may in some cases cause symptoms of system level instability such as ringing or oscillation, especially in the presence of load transients. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated ## 5.4 Thermal Information | THERMAL METRIC(1) | | LM11 | LM1117-Q1 | | | |-----------------------|----------------------------------------------|---------------|--------------|------|--| | | | DCY (SOT-223) | KVU (TO-252) | UNIT | | | | | 4 PINS | 4 PINS | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 95.4 | 67.2 | °C/W | | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 55.6 | 71.8 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 33.7 | 45.5 | °C/W | | | Ψ_{JT} | Junction-to-top characterization parameter | 13.9 | 31.6 | °C/W | | | Ψ_{JB} | Junction-to-board characterization parameter | 33.4 | 45.4 | °C/W | | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | 40.5 | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note. #### 5.5 Electrical Characteristics specified at $T_J = -40^{\circ}\text{C}$ to 150°C , $V_{IN} = V_{OUT(nom)} + 1.5V$ or $V_{IN} = 2.5V$ (whichever is greater), $I_{OUT} = 10\text{mA}$, $C_{IN} = 1.0\mu\text{F}$ and C_{OUT} = 1.0µF (unless otherwise noted); typical values are at T_J = 25°C. | 0001 1.04. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|-------|-----|------|-------------------| | V _{OUT} | Nominal output accuracy | T _J = 25°C | -1 | | 1 | % | | V | Output accuracy over temperature | $VIN \ge 3.0V$, $V_{OUT(NOM)} \le 9.0V$, $1mA \le I_{OUT} \le 1A$ | -2.0 | | 2.0 | % | | V _{OUT} | Output accuracy over temperature | $V_{OUT(NOM)} > 9.0V$, $1mA \le I_{OUT} \le 1A$ | -1.75 | | 1.75 | 70 | | A\/ | Line regulation ⁽¹⁾ | $V_{OUT(NOM)} \le 9.0V$, $V_{OUT(NOM)} + 1.5V \le V_{IN} \le 18V$, $I_{OUT} = 10\text{mA}$ | | | 0.02 | %/V | | $\Delta V_{OUT(\Delta VIN)}$ | Line regulation | $V_{OUT(NOM)} > 9.0V$, $V_{OUT(NOM)} + 1.5V \le V_{IN} \le 18V$, $I_{OUT} = 10$ mA | | | 13.5 | mV | | $\Delta V_{OUT(\Delta IOUT)}$ | Load regulation | $1\text{mA} \le I_{\text{OUT}} \le 1\text{A}, V_{\text{IN}} \ge 3.0\text{V}$ | | 0.1 | 0.75 | %/A | | V_{DO} | Dropout voltage ⁽²⁾ | V _{IN} ≥ 3.0V, I _{OUT} = 1A | | 0.9 | 1.6 | ٧ | | I _{CL} | Output current limit | $V_{OUT} = 0.9 \times V_{OUT(NOM)}, V_{IN} \ge 3.0 V$ | 1.1 | | 1.6 | Α | | I _{SC} | Short-circuit current limit | V _{OUT} = 0V | 150 | 250 | 350 | mA | | IQ | Quiescent current | I _{OUT} = 0mA | | 65 | 120 | μΑ | | I _{PULLDOWN} | Output pulldown current ⁽³⁾ | V _{IN} = 1.8V, V _{OUT} = 2.5V | 0.7 | | 1.1 | mA | | PSRR | Power-supply rejection ratio | V _{IN} = 3.3V, V _{OUT} = 1.8V, I _{OUT} = 300mA, f = 120Hz | | 70 | | dB | | V _n | Output noise voltage | BW = 10Hz to 100kHz, V _{IN} = 3.3V, V _{OUT} = 0.8V, I _{OUT} = 100mA | | 60 | | μV _{RMS} | | V _{UVLO+} | UVLO threshold rising | V _{IN} rising | | 2.2 | 2.4 | ٧ | | V _{UVLO(HYS)} | UVLO hysteresis | | | 130 | | mV | | V _{UVLO-} | UVLO threshold falling | V _{IN} falling | 1.9 | | | ٧ | | T _{SD(shutdown)} | Thermal shutdown temperature | Temperature increasing | | 180 | | °C | | T _{SD(reset)} | Thermal shutdown reset temperature | Temperature falling | | 160 | | °C | - Line regulation is measured with $V_{IN} = V_{OUT(NOM)} + 1.5V$ or 2.5V (whichever is greater). V_{DO} is measured with $V_{IN} = 95\%$ x $V_{OUT(nom)}$ for fixed output devices. V_{DO} is not measured for fixed output devices when $V_{OUT} < 2.5V$. $I_{PULLDOWN}$ is measured with $V_{IN} = 1.8V$ (lower than UVLO falling threshold, with LDO in disabled state) and 2.5V applied on V_{OUT} (3) ## 5.6 Typical Characteristics at operating temperature T_J = 25°C, V_{IN} = $V_{OUT(NOM)}$ + 1.5V or 2.5V (whichever is greater), I_{OUT} = 10mA, C_{IN} = 1.0 μ F, and C_{OUT} = 1.0 μ F (unless otherwise noted) # **5.6 Typical Characteristics (continued)** at operating temperature T_J = 25°C, V_{IN} = $V_{OUT(NOM)}$ + 1.5V or 2.5V (whichever is greater), I_{OUT} = 10mA, C_{IN} = 1.0 μ F, and C_{OUT} = 1.0 μ F (unless otherwise noted) Copyright © 2025 Texas Instruments Incorporated 図 5-11. V_{DO} vs V_{IN} 資料に関するフィードバック(ご意見やお問い合わせ) を送信 図 5-12. V_{DO} vs V_{IN} 1 # 5.6 Typical Characteristics (continued) at operating temperature T_J = 25°C, V_{IN} = $V_{OUT(NOM)}$ + 1.5V or 2.5V (whichever is greater), I_{OUT} = 10mA, C_{IN} = 1.0 μ F, and C_{OUT} = 1.0 μ F (unless otherwise noted) 0.75 0.5 0.25 -0.25 € -0.5 Current -1.25 -1.5 -1.75 # **5.6 Typical Characteristics (continued)** at operating temperature T_J = 25°C, V_{IN} = $V_{OUT(NOM)}$ + 1.5V or 2.5V (whichever is greater), I_{OUT} = 10mA, C_{IN} = 1.0 μ F, and C_{OUT} = 1.0 μ F (unless otherwise noted) 9 # **6 Detailed Description** #### 6.1 Overview The LM1117-Q1 is a AEC-Q100 qualified, low quiescent current, high PSRR linear regulator capable of sourcing load current up to 1A. This device is designed for high current automotive applications in HEV/EV and power train systems where there are increasingly stringent requirements for standby and active power consumption. This device features integrated foldback current limit, thermal shutdown, internal output pulldown, and undervoltage lockout (UVLO). This device delivers excellent line and load transient performance. The LM1117-Q1 is low noise and exhibits very good PSRR. The operating ambient temperature range of the device is –40°C to +125°C. ## 6.2 Functional Block Diagram #### 6.3 Feature Description #### 6.3.1 Dropout Voltage Dropout voltage (V_{DO}) is defined as the input voltage minus the output voltage $(V_{IN} - V_{OUT})$ at the rated output current (I_{RATED}) , where the pass transistor is fully turned on. I_{RATED} is the maximum I_{OUT} listed in the Recommended Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than the nominal output regulation, then the output voltage falls as well. For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance ($R_{DS(ON)}$) of the pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for that current scales accordingly. Use the following equation to calculate the $R_{DS(ON)}$ of the device. $$R_{\rm DS(ON)} = \frac{V_{\rm DO}}{I_{\rm RATED}} \tag{1}$$ #### 6.3.2 Foldback Current Limit The device has an internal current limit circuit that protects the regulator during transient high-load current faults or shorting events. The current limit is a hybrid brick-wall-foldback scheme. The current limit transitions from a brick-wall scheme to a foldback scheme at the foldback voltage (V_{FOLDBACK}). In a high-load current fault with the output voltage above V_{FOLDBACK}, the brick-wall scheme limits the output current to the current limit (I_{CL}). When the voltage drops below V_{FOLDBACK}, a foldback current limit activates that scales back the current as the output voltage approaches GND. When the output is shorted, the device supplies a typical current called the shortcircuit current limit (I_{SC}). I_{CL} and I_{SC} are listed in the *Electrical Characteristics* table. For this device, $V_{FOIDBACK} = 50\% \times V_{OUT(nom)}$ The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the device begins to heat up because of the increase in power dissipation. When the device is in brick-wall current limit, the pass transistor dissipates power [$(V_{IN} - V_{OUT}) \times I_{CL}$]. When the device output is shorted and the output is below $V_{FOLDBACK}$, the pass transistor dissipates power [$(V_{IN} - V_{OUT}) \times I_{SC}$]. If thermal shutdown is triggered, the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output current fault condition continues, the device cycles between current limit and thermal shutdown. For more information on current limits, see the *Know Your Limits* application note. ⊠ 6-1 shows a diagram of the foldback current limit. 図 6-1. Foldback Current Limit #### 6.3.3 Undervoltage Lockout (UVLO) The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a controlled and consistent turn-on and turn-off of the output voltage. To prevent the device from turning off if the input drops during turn-on, the UVLO has hysteresis as specified in the *Electrical Characteristics* table. Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 11 Product Folder Links: LM1117-Q1 #### 6.3.4 Thermal Shutdown The device contains a thermal shutdown protection circuit to disable the device when the junction temperature (T_J) of the pass transistor rises to $T_{SD(shutdown)}$ (typical). Thermal shutdown hysteresis assures that the device resets (turns on) when the temperature falls to $T_{SD(reset)}$ (typical). The thermal time-constant of the semiconductor die is fairly short, thus the device can cycle on and off when thermal shutdown is reached until power dissipation is reduced. Power dissipation during start-up can be high from large $V_{\text{IN}} - V_{\text{OUT}}$ voltage drops across the device or from high inrush currents charging large output capacitors. Under some conditions, the thermal shutdown protection disables the device before start-up completes. For reliable operation, limit the junction temperature to the maximum listed in the *Recommended Operating Conditions* table. Operation above this maximum temperature causes the device to exceed operational specifications. Although the internal protection circuitry of the device is designed to protect against thermal overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability. #### 6.4 Device Functional Modes ## 6.4.1 Device Functional Mode Comparison 表 6-1 shows the conditions that lead to the different modes of operation. See the *Electrical Characteristics* table for parameter values. | 2. | | | | | | |---------------------------------------------------|-------------------------------------------------------------|------------------------------------------|--------------------------------------------|--|--| | OPERATING MODE | PARAMETER | | | | | | OPERATING WIDDE | V _{IN} | I _{оит} | TJ | | | | Normal operation | $V_{IN} > V_{OUT(nom)} + V_{DO}$ and $V_{IN} > V_{IN(min)}$ | I _{OUT} < I _{OUT(max)} | $T_J < T_{SD(shutdown)}$ | | | | Dropout operation | $V_{IN(min)} < V_{IN} < V_{OUT(nom)} + V_{DO}$ | I _{OUT} < I _{OUT(max)} | $T_J < T_{SD(shutdown)}$ | | | | Disabled (any true condition disables the device) | V _{IN} < V _{UVLO} | Not applicable | T _J > T _{SD(shutdown)} | | | 表 6-1. Device Functional Mode Comparison #### 6.4.2 Normal Operation The device regulates to the nominal output voltage when the following conditions are met: - The input voltage is greater than the nominal output voltage plus the dropout voltage (V_{OUT(nom)} + V_{DO}) - The output current is less than the current limit (I_{OUT} < I_{CL}) - The device junction temperature is less than the thermal shutdown temperature (T_J < T_{SD}) #### 6.4.3 Dropout Operation If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage tracks the input voltage. During this mode, the transient performance of the device becomes significantly degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load transients in dropout can result in large output-voltage deviations. When the device is in a steady dropout state (defined as when the device is in dropout, $V_{IN} < V_{OUT(NOM)} + V_{DO}$, directly after being in a normal regulation state, but *not* during start-up), the pass transistor is driven into the ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output voltage plus the dropout voltage $(V_{OUT(NOM)} + V_{DO})$, the output voltage can overshoot for a short period of time while the device pulls the pass transistor back into the linear region. Product Folder Links: LM1117-Q1 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated # 7 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ## 7.1 Application Information ## 7.1.1 Recommended Capacitor Types The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of Y5V-rated capacitors is discouraged because of large variations in capacitance. Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and temperature. Generally, expect the effective capacitance to decrease by as much as 50%. The input and output capacitors recommended in the *Recommended Operating Conditions* table account for an effective capacitance of approximately 50% of the nominal value. ## 7.1.2 Input and Output Capacitor Requirements Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. An input capacitor is recommended if the source impedance is more than 0.5Ω . A higher value capacitor may be necessary if large, fast rise-time load or line transients are anticipated or if the device is located several inches from the input power source. Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor within the range specified in the *Recommended Operating Conditions* table for stability. #### 7.1.3 Reverse Current Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the long-term reliability of the device. Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute maximum rating of $V_{OUT} \le V_{IN} + 0.3V$. - If the device has a large C_{OUT} and the input supply collapses with little or no load current - · The output is biased when the input supply is not established - The output is biased above the input supply If reverse current flow is expected in the application, external protection is recommended to protect the device. Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation is anticipated. Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 13 #### 7-1 shows one approach for protecting the device. 図 7-1. Example Circuit for Reverse Current Protection Using a Schottky Diode #### 7.1.4 Power Dissipation (P_D) Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few or no other heat-generating devices that cause added thermal stress. To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. Use the following equation to calculate the power dissipation (P_D). $$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$ (2) 注 Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct selection of the system voltage rails. For the lowest power dissipation, use the minimum input voltage required for correct output regulation. For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an array of plated vias that conduct heat to additional copper planes for increased heat dissipation. The maximum power dissipation determines the maximum allowable ambient temperature (T_A) for the device. According to the following equation, power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance ($R_{\theta JA}$) of the combined PCB and device package and the temperature of the ambient air (T_A). $$T_{J} = T_{A} + (R_{\theta,JA} \times P_{D}) \tag{3}$$ Thermal resistance ($R_{\theta JA}$) is highly dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The junction-to-ambient thermal resistance listed in the *Thermal Shutdown* table is determined by the JEDEC standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance. This thermal resistance is used as a relative measure of package thermal performance. $R_{\theta JA}$ is improved by 35% to 55% compared to the *Thermal Shutdown* table value with the PCB board layout optimization. See the *An empirical analysis of the impact of board layout on LDO thermal performance* application note for further details 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated ## 7.1.5 Estimating Junction Temperature The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of the linear regulator when in-circuit on a typical printed circuit board application. These metrics are not thermal resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi metrics are determined to be significantly independent of the copper area available for heat-spreading. The Thermal Shutdown table lists the primary thermal metrics, which are the junction-to-top characterization parameter (ψ_{IT}) and junction-to-board characterization parameter (ψ_{IR}). These parameters provide two methods for calculating the junction temperature (T_J). As described in the following equations, use the junction-to-top characterization parameter (ψ,IT) with the temperature at the center-top of device package (T_T) to calculate the junction temperature. Use the junction-to-board characterization parameter (ψ,_{IR}) with the PCB surface temperature 1mm from the device package (T_B) to calculate the junction temperature. $$T_{J} = T_{T} + \psi_{JT} \times P_{D} \tag{4}$$ where: - P_D is the dissipated power - T_T is the temperature at the center-top of the device package $$T_{J} = T_{B} + \psi_{JB} \times P_{D} \tag{5}$$ where: T_B is the PCB surface temperature measured 1mm from the device package and centered on the package For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package Thermal Metrics application note. ## 7.2 Typical Application The LM1117-Q1 is AEC-Q100 qualified, low quiescent current linear regulator designed for high-current automotive applications. Unlike most typical high-current linear regulators, the LM1117-Q1 consumes significantly less quiescent current. This device delivers excellent line and load transient performance. The device is low noise and exhibits a very good PSRR. As a result, the LM1117-Q1 is designed for high-current automotive applications that require very sensitive power-supply rails. This regulator offers both current limit and thermal protection. The operating ambient temperature range of the device is -40°C to +125°C. ▼ 7-2 shows a typical application circuit for this device. 図 7-2. Typical Application Circuit English Data Sheet: SBVS468 #### 7.2.1 Design Requirements For this design example, use the parameters listed in 表 7-1 as the input parameters. 表 7-1. Design Parameters | PARAMETER | DESIGN REQUIREMENT | |----------------|--------------------| | Input voltage | 12V | | Output voltage | 3.3V | | Output current | 100mA | #### 7.2.2 Detailed Design Procedure For this design example, the 3.3V, fixed-version LM111733QxxxRQ1 is selected and is powered by a standard 12V input supply. The dropout voltage (V_{DO}) is kept within the LM1117-Q1 dropout voltage specification for the 3.3V output voltage option to keep the device in regulation under all load and temperature conditions for this design. A 1.0 μ F output capacitor is recommended for excellent load transient response. The input capacitor is optional and is used to reduce the input impedance of the circuit and improve the transient response. As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude. #### 7.2.3 Application Curves at operating temperature T_J = 25°C, V_{IN} = $V_{OUT(NOM)}$ + 1.5V or 2.5V (whichever is greater), I_{OUT} = 10mA, C_{IN} = 1.0 μ F, and C_{OUT} = 1.0 μ F (unless otherwise noted). Product Folder Links: LM1117-Q1 図 7-3. Start-up and Inrush Current With 22 μ F at C_{OUT} 図 7-5. I_{OUT} Transient From 1mA to 1A V_{IN} = 5V, V_{OUT} = 3.3V, ramp rate = 0.4A/ μ s # 図 7-4. I_{OUT} Transient From 0mA to 100mA V_{IN} = 5V, V_{OUT} = 3.3V, ramp rate = 0.8A/ μ s 図 7-6. I_{OUT} Transient From 250mA to 850mA 図 7-7. V_{IN} Transient in Dropout From 4V to 13V V_{OUT} = 3.3V, I_{OUT} = 33 μ A, V_{IN} ramp rate = 1.6V/ μ s 図 7-8. V_{IN} Transient From 5V to 16V ## 7.3 Best Design Practices Place input and output capacitors as close to the device as possible. Use a ceramic output capacitor. Do not exceed the device absolute maximum ratings. ## 7.4 Power Supply Recommendations Connect a low output impedance power supply directly to the input pin of the device. Inductive impedances between the input supply and the input pin can create significant voltage excursions at the input pin during start-up or load transient events. ## 7.5 Layout ## 7.5.1 Layout Guidelines Place input and output capacitors as close to the device pins as possible. To improve characteristic AC performance such as PSRR, output noise, and transient response, design the board with separate ground planes for V_{IN} and V_{OUT} , with the ground plane connected only at the GND pin of the device. In addition, the ground connection for the output capacitor must be connected directly to the GND pin of the device. Higher value ESR capacitors can degrade PSRR performance. ## 7.5.2 Layout Examples 図 7-9. Layout Example for DCY (SOT-223) Package 図 7-10. Layout Example for KVU (TO-252) Package 8 Device and Documentation Support ## 8.1 Device Support #### 8.1.1 Device Nomenclature #### 表 8-1. Available Options (1) (2) | PRODUCT | V _{OUT} | | | | |--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | LM1117 abcQxxxy Q1 | ab is the nominal output voltage, hexadecimal coding is used a: for the unit level of the output voltage. b: for highlighting decimal places. If output ≥ 10.0V, b is marked as V and for output < 10.0V, b is insignificant. c: for the tenth level of the output voltage. for example: 33 for 3.3V, 80 for 8.0V, 12V0 for 12.0V. xxx is the package designator. y is the package quantity. | | | | ⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com. ## 8.2 Documentation Support #### 8.2.1 Related Documentation For related documentation see the following: - Texas Instruments, TLV1117 Adjustable and Fixed Low-Dropout Voltage Regulator data sheet - Texas Instruments, LM1117 800mA Low-Dropout Linear Regulator data sheet - Texas Instruments, Know Your Limits application note - Texas Instruments, An empirical analysis of the impact of board layout on LDO thermal performance application note #### 8.3 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 ## 8.4 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 8.5 Trademarks テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 8.6 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 8.7 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 Product Folder Links: LM1117-Q1 ⁽²⁾ The device is available in factory-programmable fixed output voltage increments of 100mV upon request. # 9 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | DATE | REVISION | NOTES | | | | |---------------|----------|-----------------|--|--|--| | December 2024 | * | Initial Release | | | | # 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 21-Dec-2024 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |-------------------|------------|--------------|--------------------|------|----------------|----------|-------------------------------|---------------|--------------|-------------------------|---------| | PLM1117120QDCYRQ1 | ACTIVE | SOT-223 | DCY | 4 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | | PLM1117120QKVURQ1 | ACTIVE | TO-252 | KVU | 3 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | | PLM111733QDCYRQ1 | ACTIVE | SOT-223 | DCY | 4 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | | PLM111733QKVURQ1 | ACTIVE | TO-252 | KVU | 3 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | | PLM111750QDCYRQ1 | ACTIVE | SOT-223 | DCY | 4 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | | PLM111750QKVURQ1 | ACTIVE | TO-252 | KVU | 3 | 2500 | TBD | Call TI | Call TI | -40 to 125 | | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. # **PACKAGE OPTION ADDENDUM** www.ti.com 21-Dec-2024 **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF LM1117-Q1: • Catalog : LM1117 NOTE: Qualified Version Definitions: Catalog - TI's standard catalog product Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4205521-2/E # DCY (R-PDSO-G4) #### PLASTIC SMALL-OUTLINE NOTES: A. All linear dimensions are in millimeters (inches). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion. D. Falls within JEDEC TO-261 Variation AA. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated