SGLS276D January   2005  – March 2016 TPS61040-Q1 , TPS61041-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Peak Current Control
      2. 7.3.2 Soft Start
      3. 7.3.3 Enable
      4. 7.3.4 Undervoltage Lockout
      5. 7.3.5 Thermal Shutdown
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Inductor Selection, Maximum Load Current
        2. 8.2.2.2 Setting The Output Voltage and Feed-Forward Capacitor
        3. 8.2.2.3 Line and Load Regulation
        4. 8.2.2.4 Output Capacitor Selection
        5. 8.2.2.5 Input Capacitor Selection
        6. 8.2.2.6 Diode Selection
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Related Links
    3. 11.3 Community Resource
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DBV|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

1 Features

  • Qualified for Automotive Applications
  • 1.8-V to 6-V Input Voltage Range
  • Adjustable Output Voltage Range Up to 28 V
  • 400-mA (TPS61040-Q1) and 250-mA (TPS61041-Q1) Internal Switch Current
  • Up to 1-MHz Switching Frequency
  • 28-µA Typical No Load Quiescent Current
  • 1-µA Typical Shutdown Current
  • Internal Soft Start
  • Space-Saving, 5-Pin SOT-23 Package

2 Applications

  • Automotive Telematics, eCall, and Tolling
  • Infotainment and Clusters
  • Advanced Driver Assistance System (ADAS)
  • LCD Bias Supplies
  • White-LED Supplies for LCD Backlights
  • Dual-CELL NiMH/NiCd or Single-CELL Li-Ion Battery-Powered Systems
  • Standard 3.3-V or 5-V to 12-V Conversions

3 Description

The TPS6104x-Q1 devices are high-frequency boost converters for automotive applications. The devices are ideal for generating output voltages up to 28 V from a pre-regulated low voltage rail, dual-cell NiMH/NiCd or a single-cell Li-Ion battery, supporting input voltages from 1.8 V to 6 V.

The TPS6104x-Q1 devices operate with a switching frequency up to 1 MHz, allowing the use of small external components such as ceramic as well as tantalum output capacitors. Combined with the space-saving, 5-pin SOT-23 package, the TPS6104x-Q1 devices accomplish a small overall solution size. The TPS61040-Q1 device has an internal 400-mA switch current limit, while the TPS61041-Q1 device has a 250-mA switch current limit, offering lower output voltage ripple and allowing the use of a smaller form factor inductor for lower-power applications.

The TPS6104x-Q1 devices operate in a pulse frequency modulation (PFM) scheme with constant peak current control. The combination of low quiescent current (28 µA typical) and the optimized control scheme enable operation of the devices at high efficiencies over the entire load current range.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
TPS6104x-Q1 SOT-23 (5) 2.90 mm × 1.60 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Diagram

TPS61040-Q1 TPS61041-Q1 ta_typ_app_lvs413.gif

Efficiency vs Output Current

TPS61040-Q1 TPS61041-Q1 ta_eff_vs_out_lvs413.gif