SLOS447I September   2004  – May 2016 LMV341 , LMV342 , LMV344

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: V+ = 2.7 V
    6. 6.6 Electrical Characteristics: V+ = 5 V
    7. 6.7 Shutdown Characteristics: V+ = 2.7 V
    8. 6.8 Shutdown Characteristics: V+ = 5 V
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PMOS Input Stage
      2. 7.3.2 CMOS Output Stage
      3. 7.3.3 Shutdown
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • PW|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

1 Features

  • 2.7-V and 5-V Performance
  • Rail-to-Rail Output Swing
  • Input Bias Current:1 pA (Typical)
  • Input Offset Voltage: 0.25 mV (Typical)
  • Low Supply Current: 100 μA (Typical)
  • Low Shutdown Current: 45 pA (Typical)
  • Gain Bandwidth of 1 MHz (Typical)
  • Slew Rate: 1 V/μs (Typical)
  • Turnon Time From Shutdown: 5 μs (Typical)
  • Input Referred Voltage Noise (at 10 kHz): 20 nV/√Hz
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (HBM)
    • 750-V Charged-device model (CDM)

2 Applications

  • Cordless and Cellular Phones
  • Consumer Electronics (Laptops, PDAs)
  • Audio Preamplifiers for Voice
  • Portable, Battery-Powered Electronic Equipment
  • Supply-Current Monitoring
  • Battery Monitoring
  • Buffers
  • Filters
  • Drivers

3 Description

The LMV34x devices are single, dual, and quad CMOS operational amplifiers, respectively, with low voltage, low power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias current of 1 pA (typical) and an offset voltage of 0.25 mV (typical). The single-supply amplifier is designed specifically for low-voltage
(2.7 V to 5 V) operation, with a wide common-mode input voltage range that typically extends from –0.2 V to 0.8 V from the positive supply rail. The LMV341 (single) also offers a shutdown (SHDN) pin that can be used to disable the device. In shutdown mode, the supply current is reduced to 33 nA (typical). Additional features of the family are a 20-nV/√Hz voltage noise at 10 kHz, 1-MHz unity-gain bandwidth, 1-V/μs slew rate, and 100-μA current consumption per channel.

Offered in both the SOT-23 and smaller SC70 packages, the LMV341 is suitable for the most space-constraint applications. The LMV342 dual device is offered in the standard SOIC and VSSOP packages. An extended industrial temperature range from –40°C to 125°C makes these devices suitable in a wide variety of commercial and industrial environments.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
LMV341IDCK SC70 (6) 2.00 mm × 1.25 mm
LMV341IDBV SOT-23 (6) 2.90 mm ×1.60 mm
LMV342ID SOIC (8) 4.90 mm × 3.91 mm
LMV342IDGK VSSOP (8) 3.00 mm × 3.00 mm
LMV344ID SOIC (14) 8.65 mm × 3.91 mm
LMV344IPW TSSOP (14) 5.00 mm × 4.40 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Sample-and-Hold Circuit

LMV341 LMV342 LMV344 app_circuit_los447.gif