SNVSAJ3C
March 2016 – December 2022
LM5165-Q1
PRODUCTION DATA
1
Features
2
Applications
3
Description
4
Revision History
5
Pin Configuration and Functions
6
Specifications
6.1
Absolute Maximum Ratings
6.2
ESD Ratings
6.3
Recommended Operating Conditions
6.4
Thermal Information
6.5
Electrical Characteristics
6.6
Switching Characteristics
6.7
Typical Characteristics
7
Detailed Description
7.1
Overview
7.2
Functional Block Diagram
7.3
Feature Description
7.3.1
Integrated Power MOSFETs
7.3.2
Selectable PFM or COT Mode Converter Operation
7.3.3
COT Mode Light-Load Operation
7.3.4
Low Dropout Operation and 100% Duty Cycle Mode
7.3.5
Adjustable Output Voltage (FB)
7.3.6
Adjustable Current Limit
7.3.7
Precision Enable (EN) and Hysteresis (HYS)
7.3.8
Power Good (PGOOD)
7.3.9
Configurable Soft Start (SS)
7.3.10
Thermal Shutdown
7.4
Device Functional Modes
7.4.1
Shutdown Mode
7.4.2
Standby Mode
7.4.3
Active Mode in COT
7.4.4
Active Mode in PFM
7.4.5
Sleep Mode in PFM
8
Applications and Implementation
8.1
Application Information
8.2
Typical Applications
8.2.1
Design 1: Wide VIN, Low IQ COT Converter Rated at 5 V, 150 mA
8.2.1.1
Design Requirements
8.2.1.2
Detailed Design Procedure
8.2.1.2.1
Custom Design With WEBENCH® Tools
8.2.1.2.2
Switching Frequency – RT
8.2.1.2.3
Filter Inductor – LF
8.2.1.2.4
Output Capacitors – COUT
8.2.1.2.5
Series Ripple Resistor – RESR
8.2.1.2.6
Input Capacitor – CIN
8.2.1.2.7
Soft-Start Capacitor – CSS
8.2.1.3
Application Curves
8.2.2
Design 2: Small Solution Size PFM Converter Rated at 3.3 V, 50 mA
8.2.2.1
Design Requirements
8.2.2.2
Detailed Design Procedure
8.2.2.2.1
Peak Current Limit Setting – RILIM
8.2.2.2.2
Switching Frequency – LF
8.2.2.2.3
Output Capacitor – COUT
8.2.2.2.4
Input Capacitor – CIN
8.2.2.3
Application Curves
8.2.3
Design 3: High Density 12-V, 75-mA PFM Converter
8.2.3.1
Design Requirements
8.2.3.2
Detailed Design Procedure
8.2.3.2.1
Peak Current Limit Setting – RILIM
8.2.3.2.2
Switching Frequency – LF
8.2.3.2.3
Input and Output Capacitors – CIN, COUT
8.2.3.2.4
Feedback Resistors – RFB1, RFB2
8.2.3.2.5
Undervoltage Lockout Setpoint – RUV1, RUV2, RHYS
8.2.3.2.6
Soft Start – CSS
8.2.3.3
Application Curves
8.2.4
Design 4: 3.3-V, 150-mA COT Converter With High Efficiency
8.2.4.1
Design Requirements
8.2.4.2
Application Curves
8.2.5
Design 5: 15-V, 150-mA, 600-kHz COT Converter
8.2.5.1
Design Requirements
8.2.5.2
Detailed Design Procedure
8.2.5.2.1
COT Output Ripple Voltage Reduction
8.2.5.3
Application Curves
8.3
Power Supply Recommendations
8.4
Layout
8.4.1
Layout Guidelines
8.4.1.1
Compact PCB Layout for EMI Reduction
8.4.1.2
Feedback Resistor Layout
8.4.2
Layout Example
9
Device and Documentation Support
9.1
Device Support
9.1.1
Third-Party Products Disclaimer
9.1.2
Development Support
9.1.3
Custom Design With WEBENCH® Tools
9.2
Documentation Support
9.2.1
Related Documentation
9.3
Receiving Notification of Documentation Updates
9.4
Support Resources
9.5
Trademarks
9.6
Electrostatic Discharge Caution
9.7
Glossary
10
Mechanical, Packaging, and Orderable Information
1
Features
AEC-Q100 qualified for automotive applications
Device temperature grade 1: –40°C to 125°C ambient temperature range
Device HBM ESD classification level 2
Device CDM ESD classification level C5
Wide input voltage range of 3 V to 65 V
10.5-µA no-load quiescent current
–40°C to 150°C junction temperature range
Fixed (3.3 V and 5 V) or adjustable output voltages
Meets EN55022 / CISPR 22 EMI standards
Integrated 2-Ω PMOS buck switch
Supports 100% duty cycle for low dropout
Integrated 1-Ω NMOS synchronous rectifier
Eliminates external rectifier diode
Programmable current limit setpoint (four levels)
Selectable PFM or COT mode operation
1.223-V ±1% internal voltage reference
900-µs internal or programmable soft start
Active slew rate control for low EMI
Monotonic start-up into prebiased output
No loop compensation or bootstrap components
Precision enable and input UVLO with hysteresis
Thermal shutdown protection with hysteresis
10-pin VSON and VSSOP packages
Use
TPSM265R1
module for faster time to market
Create a custom regulator design using
WEBENCH®
Power Designer