SLUSCU2 November   2017

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power-Up from Battery Without DC Source
      2. 8.3.2 Power-Up From DC Source
        1. 8.3.2.1 CHRG_OK Indicator
        2. 8.3.2.2 Input Voltage and Current Limit Setup
        3. 8.3.2.3 Battery Cell Configuration
        4. 8.3.2.4 Device Hi-Z State
      3. 8.3.3 Converter Operation
        1. 8.3.3.1 Inductor Setting through IADPT Pin
        2. 8.3.3.2 Continuous Conduction Mode (CCM)
        3. 8.3.3.3 Pulse Frequency Modulation (PFM)
      4. 8.3.4 Current and Power Monitor
        1. 8.3.4.1 High-Accuracy Current Sense Amplifier (IADPT and IBAT)
        2. 8.3.4.2 High-Accuracy Power Sense Amplifier (PSYS)
      5. 8.3.5 Input Source Dynamic Power Manage
      6. 8.3.6 Two-Level Adapter Current Limit (Peak Power Mode)
      7. 8.3.7 Processor Hot Indication
        1. 8.3.7.1 PROCHOT During Low Power Mode
        2. 8.3.7.2 PROCHOT Status
      8. 8.3.8 Device Protection
        1. 8.3.8.1 Watchdog Timer
        2. 8.3.8.2 Input Overvoltage Protection (ACOV)
        3. 8.3.8.3 Input Overcurrent Protection (ACOC)
        4. 8.3.8.4 System Overvoltage Protection (SYSOVP)
        5. 8.3.8.5 Battery Overvoltage Protection (BATOVP)
        6. 8.3.8.6 Battery Short
        7. 8.3.8.7 Thermal Shutdown (TSHUT)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Forward Mode
        1. 8.4.1.1 System Voltage Regulation with Narrow VDC Architecture
        2. 8.4.1.2 Battery Charging
    5. 8.5 Programming
      1. 8.5.1 SMBus Interface
        1. 8.5.1.1 SMBus Write-Word and Read-Word Protocols
        2. 8.5.1.2 Timing Diagrams
    6. 8.6 Register Map
      1. 8.6.1  Setting Charge and PROCHOT Options
        1. 8.6.1.1 ChargeOption0 Register (SMBus address = 12h) [reset = E20Eh]
        2. 8.6.1.2 ChargeOption1 Register (SMBus address = 30h) [reset = 211h]
        3. 8.6.1.3 ChargeOption2 Register (SMBus address = 31h) [reset = 2B7]
        4. 8.6.1.4 ChargeOption3 Register (SMBus address = 32h) [reset = 0h]
        5. 8.6.1.5 ProchotOption0 Register (SMBus address = 33h) [reset = 04A54h]
        6. 8.6.1.6 ProchotOption1 Register (SMBus address = 34h) [reset = 8120h]
        7. 8.6.1.7 ADCOption Register (SMBus address = 35h) [reset = 2000h]
      2. 8.6.2  Charge and PROCHOT Status
        1. 8.6.2.1 ChargerStatus Register (SMBus address = 20h) [reset = 0000h]
        2. 8.6.2.2 ProchotStatus Register (SMBus address = 21h) [reset = 0h]
      3. 8.6.3  ChargeCurrent Register (SMBus address = 14h) [reset = 0h]
        1. 8.6.3.1 Battery Pre-Charge Current Clamp
      4. 8.6.4  MaxChargeVoltage Register (SMBus address = 15h) [reset value based on CELL_BATPRESZ pin setting]
      5. 8.6.5  MinSystemVoltage Register (SMBus address = 3Eh) [reset value based on CELL_BATPRESZ pin setting]
        1. 8.6.5.1 System Voltage Regulation
      6. 8.6.6  Input Current and Input Voltage Registers for Dynamic Power Management
        1. 8.6.6.1 Input Current Registers
          1. 8.6.6.1.1 IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) [reset = 4000h]
          2. 8.6.6.1.2 IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) [reset = 0h]
          3. 8.6.6.1.3 InputVoltage Register (SMBus address = 3Dh) [reset = VBUS-1.28V]
      7. 8.6.7  ADCVBUS/PSYS Register (SMBus address = 23h)
      8. 8.6.8  ADCIBAT Register (SMBus address = 24h)
      9. 8.6.9  ADCIINCMPIN Register (SMBus address = 25h)
      10. 8.6.10 ADCVSYSVBAT Register (SMBus address = 26h) (reset = )
      11. 8.6.11 ID Registers
        1. 8.6.11.1 ManufactureID Register (SMBus address = FEh) [reset = 0040h]
        2. 8.6.11.2 Device ID (DeviceAddress) Register (SMBus address = FFh) [reset = 0h]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 ACP-ACN Input Filter
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Input Capacitor
        4. 9.2.2.4 Output Capacitor
        5. 9.2.2.5 Power MOSFETs Selection
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Layout Consideration of Current Path
      2. 11.2.2 Layout Consideration of Short Circuit Protection
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Charge 1- to 4-Cell Battery From Wide Range of Input Sources
    • 3.5-V to 24-V Input Operating Voltage
    • Supports USB2.0, USB 3.0, USB 3.1 (Type C), and USB_PD Input Current Settings
    • Seamless Transition Between Buck and Boost Operation
    • Input current and Voltage Regulation (IDPM and VDPM) Against Source Overload
  • Power/Current Monitor for CPU Throttling
    • Comprehensive PROCHOT Profile, IMVP8 Compliant
    • Input and Battery Current Monitor
    • System Power Monitor, IMVP8 Compliant
  • Narrow-VDC (NVDC) Power Path Management
    • Instant-On With No Battery or Deeply Discharged Battery
    • Battery Supplements System When Adapter is Fully-Loaded
    • Ideal Diode Operation in Supplement Mode
  • 800-kHz or 1.2-MHz Programmable Switching Frequency for 1-µH to 3.3-µH Inductor
  • Host Control Interface for Flexible System Configuration
    • SMBus Port for Optimal System Performance and Status Reporting
    • Hardware Pin to Set Input Current Limit Without EC Control
  • Integrated ADC to Monitor Voltage, Current and Power
  • High Accuracy Regulation and Monitor
    • ±0.5% Charge Voltage Regulation
    • ±2% Input/Charge Current Regulation
    • ±2% Input/Charge Current Monitor
    • ±5% Power Monitor
  • Safety
    • Thermal Shutdown
    • Input, System, Battery Overvoltage Protection
    • MOSFET Inductor Overcurrent Protection
  • Low Battery Quiescent Current
  • Input Current Optimizer (ICO) to Extract Max Input Power
  • Charge any Battery Chemistry: Li+, LiFePO4, NiCd, NiMH, Lead Acid
  • Package: 32-Pin 4 × 4 WQFN

Applications

  • Ultra-Books, Notebooks, Detachable, and Tablet PCs and Power Bank
  • Industrial and Medical Equipment
  • Portable Equipment With Rechargeable Batteries

Description

The bq25708 is a synchronous NVDC battery buck-boost charge controller, offering low component count, high efficiency solution for space-constraint, multi-chemistry battery charging applications.

The NVDC-1 configuration allows the system to be regulated at battery voltage, but not drop below system minimum voltage. The system keeps operating even when the battery is completely discharged or removed. When load power exceeds input source rating, the battery goes into supplement mode and prevents the system from crashing.

The bq25708 charges battery from a wide range of input sources including USB adapter, high voltage USB PD sources and traditional adapters.

Device Information (1)

PART NUMBER PACKAGE BODY SIZE (NOM)
bq25708 WQFN (32) 4.00 mm × 4.00 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Application Diagram

bq25708 Simp_schem_SLUSCU2.gif